Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(5): 1143-1154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37771219

RESUMO

This review provides a current opinion on the most recent works that have been published toward the application of electrochemical advance oxidation processes (EAOPs) for the degradation of pharmaceutical and personal care products (PPCPs) in water streams. Advances in the application of anodic oxidation (AO)- and electro-Fenton (EF)-based processes are reported, including operational conditions, electrode performance, and removal. Although AO- and EF-based processes can easily reach 100% removal of PPCPs, mineralization is desirable to avoid the generation of potential toxic byproducts. The following section exploring some techno-economic aspects of the application of EAOPs is based on electrode selection, operational costs as well as their use as cotreatments, and their synergistic effects. Finally, this short review ends with perspectives about the emerging topics that are faced by these technologies applied for the degradation of PPCPs in research and practice.


Assuntos
Cosméticos , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio , Oxirredução , Eletrodos , Preparações Farmacêuticas
2.
Sci Total Environ ; 827: 154348, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35257780

RESUMO

Pharmaceutical and personal care products (PPCPs) are part of the emerging contaminants (ECs) in the environment due to their known or suspected adverse effects in aquatic and terrestrial organisms, as well as in human health. Presence of PPCPs in aquatic and terrestrial ecosystems has been mainly attributed to the effluents of wastewater treatment plants (WWTPs). Although several PPCPs have been detected in wastewater, their removal from wastewater via biological processes is limited. Removal of PPCPs depends on their chemical structure, concentration, solubility, and technology used to treat the wastewater. Electrochemical Advanced Oxidation Processes (EAOPs) are some of the most sought-after methods for dealing with organic pollutants in water including PPCPs, due to generation of strong oxidants such as •OH, H2O2 and O3- by using directly or indirectly electrochemical technology. This review is focused on the removal of main PPCPs via EAOPs such as, anodic oxidation, electro-Fenton, photoelectron-Fenton, solar photoelectron-Fenton, photoelectrocatalysis and sonoelectrochemical processes. Although more than 40 PPCPs have been identified through different analytical approaches, antibiotics, anti-inflammatory and antifungal are the main categories of PPCPs detected in different water matrices. Application of EAOPs has been centered in the removal of antibiotics and analgesics of high consumption by using model media, e.g. Na2SO4. Photoelectrocatalysis and Electro-Fenton processes have been the most versatile EAOPs applied for PPCPs removal under a wide range of operating conditions and a variety of electrodes. Although EAOPs have gained significant scientific interest due to their effectiveness, low environmental impact, and simplicity, further research about the removal of PPCPs and their by-products under realistic concentrations and media is needed. Moreover, mid-, and long-term experiments that evaluate EAOPs performance will provide knowledge about key parameters that allow these technologies to be scaled and reduce the potential risk of PPCPs in aquatic and terrestrial ecosystem.


Assuntos
Cosméticos , Poluentes Químicos da Água , Antibacterianos , Cosméticos/análise , Ecossistema , Humanos , Peróxido de Hidrogênio , Preparações Farmacêuticas , Rios , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...