Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 570, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886648

RESUMO

BACKGROUND: Sucrose accumulation in sugarcane is affected by several environmental and genetic factors, with plant moisture being of critical importance for its role in the synthesis and transport of sugars within the cane stalks, affecting the sucrose concentration. In general, rainfall and high soil humidity during the ripening stage promote plant growth, increasing the fresh weight and decreasing the sucrose yield in the humid region of Colombia. Therefore, this study aimed to identify markers associated with sucrose accumulation or production in the humid environment of Colombia through a genome-wide association study (GWAS). RESULTS: Sucrose concentration measurements were taken in 220 genotypes from the Cenicaña's diverse panel at 10 (early maturity) and 13 (normal maturity) months after planting. For early maturity data was collected during plant cane and first ratoon, while at normal maturity it was during plant cane, first, and second ratoon. A total of 137,890 SNPs were selected after sequencing the 220 genotypes through GBS, RADSeq, and whole-genome sequencing. After GWAS analysis, a total of 77 markers were significantly associated with sucrose concentration at both ages, but only 39 were close to candidate genes previously reported for sucrose accumulation and/or production. Among the candidate genes, 18 were highlighted because they were involved in sucrose hydrolysis (SUS6, CIN3, CINV1, CINV2), sugar transport (i.e., MST1, MST2, PLT5, SUT4, ERD6 like), phosphorylation processes (TPS genes), glycolysis (PFP-ALPHA, HXK3, PHI1), and transcription factors (ERF12, ERF112). Similarly, 64 genes were associated with glycosyltransferases, glycosidases, and hormones. CONCLUSIONS: These results provide new insights into the molecular mechanisms involved in sucrose accumulation in sugarcane and contribute with important genomic resources for future research in the humid environments of Colombia. Similarly, the markers identified will be validated for their potential application within Cenicaña's breeding program to assist the development of breeding populations.


Assuntos
Estudo de Associação Genômica Ampla , Umidade , Saccharum , Sacarose , Saccharum/genética , Saccharum/metabolismo , Colômbia , Sacarose/metabolismo , Polimorfismo de Nucleotídeo Único , Genótipo
2.
Front Plant Sci ; 14: 1294507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235209

RESUMO

Selection in the Iowa Stiff Stalk Synthetic (BSSS) maize population for high yield, grain moisture, and root and stalk lodging has indirectly modified plant architecture traits that are important for adaptation to high plant density. In this study, we developed doubled haploid (DH) lines from the BSSS maize population in the earliest cycle of recurrent selection (BSSS), cycle 17 of reciprocal recurrent selection, [BSSS(R)17] and the cross between the two cycles [BSSS/BSSS(R)C17]. We aimed to determine the phenotypic variation and changes in agronomic traits that have occurred through the recurrent selection program in this population and to identify genes or regions in the genome associated with the plant architecture changes observed in the different cycles of selection. We conducted a per se evaluation of DH lines focusing on high heritability traits important for adaptation to high planting density and grain yield. Trends for reducing flowering time, anthesis-silking interval, ear height, and the number of primary tassel branches in BSSS(R)17 DH lines compared to BSSS and BSSS/BSSS(R)C17 DH lines were observed. Additionally, the BSSS(R)C17 DH lines showed more upright flag leaf angles. Using the entire panel of DH lines increased the number of SNP markers identified within candidate genes associated with plant architecture traits. The genomic regions identified for plant architecture traits in this study may help to elucidate the genetic basis of these traits and facilitate future work about marker-assisted selection or map-based cloning in maize breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...