Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(21): 217602, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636873

RESUMO

We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

2.
Opt Express ; 20(11): 12303-17, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714218

RESUMO

We present high precision measurements of polarization rotations in the frequency range from 0.1 to 2.5 THz using a polarization modulation technique. A motorized stage rotates a polarizer at ~ 80 Hz, and the resulting modulation of the polarization is measured by a lock-in technique. We achieve an accuracy of 0.050° (900 µrad) and a precision of 0.02° (350 µrad) for small rotation angles. A detailed mathematical description of the technique is presented, showing its ability to fully characterize elliptical polarizations from 0.1 to 2.5 THz.


Assuntos
Refratometria/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Radiação Terahertz
3.
Phys Rev Lett ; 98(2): 027202, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358642

RESUMO

Based on temperature dependent far infrared transmission spectra of YMn2O5 and TbMn2O5 single crystals, we report the observation of electric dipole-active magnetic excitations, or electromagnons, in these multiferroics. Electromagnons are found to be directly responsible for the steplike anomaly of the static dielectric constant at the commensurate--incommensurate magnetic transition and are the origin of the colossal magneto-dielectric effect reported in these multiferroics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...