Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(4): 1930-1952, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109320

RESUMO

Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.


Assuntos
Proteínas Argonautas , MicroRNAs , Humanos , Proteínas Argonautas/metabolismo , Contagem de Células , Citoplasma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Núcleo Celular/metabolismo
2.
Nucleic Acid Ther ; 33(6): 339-347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917066

RESUMO

One advantage of antisense oligonucleotides (ASOs) for drug development is their long-lasting gene knockdown after administration in vivo. In this study, we examine the effect on gene expression after intraocular injection in target tissues in the eye. We examined expression levels of the Malat1 gene after intracameral or intravitreal (IV) injection of an anti-Malat1 ASO in corneal epithelium/stroma, corneal endothelium, lens capsule epithelium, neurosensory retina, and retinal pigment epithelium/choroid of the mouse eye. We assessed potency of the compound at 7 days as well as duration of the gene knockdown at 14, 28, 60, 90, and 120 days. The ASO was more potent when delivered by IV injection relative to intracameral injection, regardless of whether the tissues analyzed were at the front or back of the eye. For corneal endothelium, inhibition was >50% after 120 days for ASO at 50 µg. At IV dosages of 6 µg, we observed >75% inhibition of gene expression in the retina and lens epithelium for up to 120 days. ASOs have potential as long-lasting gene knockdown agents in the mouse eye, but efficacy varies depending on the specific ocular target tissue and injection protocol.


Assuntos
Oligonucleotídeos Antissenso , Retina , Camundongos , Animais , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Endotélio Corneano , Expressão Gênica
3.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37461596

RESUMO

Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...