Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765677

RESUMO

Polyphenols called procyanidins can be extracted from agro-industrial waste like litchi peel and coffee pulp. However, their efficacy is limited due to instability, which hinders both the bioavailability and preservation of their activity. This study aims to establish the ideal encapsulation conditions required to preserve the procyanidin properties found in extracts taken from litchi peel and coffee pulp. To attain the maximum procyanidin encapsulation efficacy (EE), the Taguchi method was utilized to streamline the spray-drying conditions for different wall materials-maltodextrin (MD), whey protein (WP), citrus pectin (CP), and skim milk (SM). The optimized conditions consisted of feed flow (3, 4.5, and 6 mL/min), temperature (125, 150, and 175 °C), and airflow (30, 35, and 40 m3/h). The microcapsules were characterized using ABTS, DPPH, lipoperoxidation, and scanning electron microscopy. Objective evaluations revealed that MD was the most effective encapsulation material for the litchi extract, whereas WP was the optimal option for the coffee extract. Of all the factors considered in the spray-drying process, feed flow had the strongest impact. The spray-drying process for the litchi peel extracts achieved high procyanidin encapsulation efficiencies at a feed flow rate of 4.5 mL/min, a temperature of 150 °C, and an airflow rate of 35 m3/h. Meanwhile, the coffee extract spray drying achieved similar results at a feed flow rate of 4.5 mL/min, a temperature of 175 °C, and an airflow rate of 40 m3/h. Encapsulation efficiencies of 98.1% and 93.6% were observed for the litchi and coffee extracts, respectively, under the mentioned optimal conditions. The microencapsulation process was successful in preserving the antioxidant properties of procyanidins. The microcapsules' size ranged from 2.6 to 3.2 micrometers. The results imply that the phenolic compounds present in the extracts function as effective antioxidant agents.

2.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987005

RESUMO

The objective of the present work was to optimize the microencapsulation conditions of neem (Azadirachta indica A. Juss) leaf extracts for the biocontrol of Tenebrio molitor. The complex coacervation method was used for the encapsulation of the extracts. The independent factors considered were the pH (3, 6, and 9), pectin (4, 6, and 8% w/v), and whey protein isolate (WPI) (0.50, 0.75, and 1.00% w/v). The Taguchi L9 (33) orthogonal array was used as the experimental matrix. The response variable was the mortality of T. molitor after 48 h. The nine treatments were applied by immersion of the insects for 10 s. The statistical analysis revealed that the most influential factor on the microencapsulation was the pH (73% of influence), followed by the pectin and WPI (15% and 7% influence, respectively). The software predicted that the optimal microencapsulation conditions were pH 3, pectin 6% w/v, and WPI 1% w/v. The signal-to-noise (S/N) ratio was predicted as 21.57. The experimental validation of the optimal conditions allowed us to obtain an S/N ratio of 18.54, equivalent to a T. molitor mortality of 85 ± 10.49%. The microcapsules had a diameter ranging from 1-5 µm. The microencapsulation by complex coacervation of neem leaf extract is an alternative for the preservation of insecticidal compounds extracted from neem leaves.

3.
J Fungi (Basel) ; 7(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34436122

RESUMO

Beauveria bassiana is an entomopathogenic fungus that is used for the biological control of different agricultural pest insects. B. bassiana is traditionally cultivated in submerged fermentation and solid-state fermentation systems to obtain secondary metabolites with antifungal activity and infective spores. This work presents the design and characterization of a new laboratory-scale biofilm bioreactor for the simultaneous production of oosporein and aerial conidia by B. bassiana PQ2. The reactor was built with materials available in a conventional laboratory. KLa was determined at different air flows (1.5-2.5 L/min) by two different methods in the liquid phase and in the exhaust gases. The obtained values showed that an air flow of 2.5 L/min is sufficient to ensure adequate aeration to produce aerial conidia and secondary metabolites by B. bassiana. Under the conditions studied, a concentration of 183 mg oosporein per liter and 1.24 × 109 spores per gram of support was obtained at 168 h of culture. These results indicate that the biofilm bioreactor represents a viable alternative for the production of products for biological control from B. bassiana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...