Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 4(4): 1362-1378, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423271

RESUMO

The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.

2.
Biochem Pharmacol ; 192: 114693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302796

RESUMO

In the face of increasing drug resistance, the development of new anthelmintics is critical for controlling nematodes that parasitise livestock. Although hymenopteran venom toxins have attracted attention for applications in agriculture and medicine, few studies have explored their potential as anthelmintics. Here we assessed hymenopteran venoms as a possible source of new anthelmintic compounds by screening a panel of ten hymenopteran venoms against Haemonchus contortus, a major pathogenic nematode of ruminants. Using bioassay-guided fractionation coupled with liquid chromatography-tandem mass spectrometry, we identified four novel anthelmintic peptides (ponericins) from the venom of the neotropical ant Neoponera commutata and the previously described ponericin M-PONTX-Na1b from Neoponera apicalis venom. These peptides inhibit H. contortus development with IC50 values of 2.8-5.6 µM. Circular dichroism spectropolarimetry indicated that the ponericins are unstructured in aqueous solution but adopt α-helical conformations in lipid mimetic environments. We show that the ponericins induce non-specific membrane perturbation, which confers broad-spectrum antimicrobial, insecticidal, cytotoxic, hemolytic, and algogenic activities, with activity across all assays typically correlated. We also show for the first time that ponericins induce spontaneous pain behaviour when injected in mice. We propose that the broad-spectrum activity of the ponericins enables them to play both a predatory and defensive role in neoponeran ants, consistent with their high abundance in venom. This study reveals a broader functionality for ponericins than previously assumed, and highlights both the opportunities and challenges in pursuing ant venom peptides as potential therapeutics.


Assuntos
Venenos de Formiga/farmacologia , Anti-Helmínticos/farmacologia , Anti-Infecciosos/farmacologia , Hemolíticos/farmacologia , Inseticidas/farmacologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Venenos de Formiga/genética , Venenos de Formiga/isolamento & purificação , Anti-Helmínticos/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Formigas , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/fisiologia , Calliphoridae , Relação Dose-Resposta a Droga , Células HEK293 , Haemonchus/efeitos dos fármacos , Haemonchus/fisiologia , Hemolíticos/isolamento & purificação , Humanos , Inseticidas/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Peptídeos/isolamento & purificação , Ovinos
3.
ACS Pharmacol Transl Sci ; 3(3): 535-546, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32566918

RESUMO

Compelling human genetic studies have identified the voltage-gated sodium channel NaV1.7 as a promising therapeutic target for the treatment of pain. The analgesic spider-venom-derived peptide µ-theraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of NaV1.7; however, little is known about the structure-activity relationships or channel interactions that define this activity. We rationally designed 17 Pn3a analogues and determined their activity at hNaV1.7 using patch-clamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 loop of domain II of hNaV1.7. Removal of hydrophobic residues Y4, Y27, and W30 led to a loss of potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at NaV1.7 (20-fold), while maintaining >100-fold selectivity over the major off-targets NaV1.4, NaV1.5, and NaV1.6. The Pn3a[D8N] mutant retained analgesic activity in vivo, significantly attenuating mechanical allodynia in a clinically relevant mouse model of postsurgical pain at doses 3-fold lower than those with wild-type Pn3a, without causing motor-adverse effects. Results from this study will facilitate future rational design of potent and selective peptidic NaV1.7 inhibitors for the development of more efficacious and safer analgesics as well as to further investigate the involvement of NaV1.7 in pain.

4.
J Biol Chem ; 295(15): 5067-5080, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139508

RESUMO

Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.


Assuntos
Bicamadas Lipídicas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nociceptividade/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Venenos de Escorpião/toxicidade
5.
Insect Biochem Mol Biol ; 118: 103310, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870846

RESUMO

Many arthropod venom peptides have potential as bioinsecticides, drug leads, and pharmacological tools due to their specific neuromodulatory functions. Assassin flies (Asilidae) are a family of predaceous dipterans that produce a unique and complex peptide-rich venom for killing insect prey and deterring predators. However, very little is known about the structure and function of their venom peptides. We therefore used an E. coli periplasmic expression system to express four disulfide-rich peptides that we previously reported to exist in venom of the giant assassin fly Dolopus genitalis. After purification, each recombinant peptide eluted from a C18 column at a position closely matching its natural counterpart, strongly suggesting adoption of the native tertiary fold. Injection of purified recombinant peptides into blowflies (Lucilia cuprina) and crickets (Acheta domestica) revealed that two of the four recombinant peptides, named rDg3b and rDg12, inhibited escape behaviour in a manner that was rapid in onset (<1 min) and reversible. Homonuclear NMR solution structures revealed that rDg3b and rDg12 adopt cystine-stabilised α/ß defensin and inhibitor cystine knot folds, respectively. Although the closest known homologues of rDg3b at the level of primary structure are dipteran antimicrobial peptides such as sapecin and lucifensin, a DALI search showed that the tertiary structure of rDg3b most closely resembles the KV11.1-specific α-potassium channel toxin CnErg1 from venom of the scorpion Centruroides noxius. This is mainly due to the deletion of a large, unstructured loop between the first and second cysteine residues present in Dg3b homologues from non-asiloid, but not existing in asiloid, species. Patch-clamp electrophysiology experiments revealed that rDg3b shifts the voltage-dependence of KV11.1 channel activation to more depolarised potentials, but has no effect on KV1.3, KV2.1, KV10.1, KCa1.1, or the Drosophila Shaker channel. Although rDg12 shares the inhibitor cystine knot structure of many gating modifier toxins, rDg12 did not affect any of these KV channel subtypes. Our results demonstrate that multiple disulfide-rich peptide scaffolds have been convergently recruited into asilid and other animal venoms, and they provide insight into the molecular evolution accompanying their weaponisation.


Assuntos
Venenos de Artrópodes/genética , Miniproteínas Nó de Cistina/genética , Defensinas/genética , Dípteros/fisiologia , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Venenos de Artrópodes/metabolismo , Miniproteínas Nó de Cistina/metabolismo , Defensinas/metabolismo , Dípteros/genética , Proteínas de Insetos/metabolismo
6.
Bioconjug Chem ; 31(1): 64-73, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31790574

RESUMO

Disulfide-rich animal venom peptides targeting either the voltage-sensing domain or the pore domain of voltage-gated sodium channel 1.7 (NaV1.7) have been widely studied as drug leads and pharmacological probes for the treatment of chronic pain. However, despite intensive research efforts, the full potential of NaV1.7 as a therapeutic target is yet to be realized. In this study, using evolved sortase A, we enzymatically ligated two known NaV1.7 inhibitors-PaurTx3, a spider-derived peptide toxin that modifies the gating mechanism of the channel through interaction with the voltage-sensing domain, and KIIIA, a small cone snail-derived peptide inhibitor of the pore domain-with the aim of creating a bivalent inhibitor which could interact simultaneously with two noncompeting binding sites. Using electrophysiology, we determined the activity at NaV1.7, and to maximize potency, we systematically evaluated the optimal linker length, which was nine amino acids. Our optimized synthetic bivalent peptide showed improved channel affinity and potency at NaV1.7 compared to either PaurTx3 or KIIIA individually. This work shows that novel and improved NaV1.7 inhibitors can be designed by combining a pore blocker toxin and a gating modifier toxin to confer desired pharmacological properties from both the voltage sensing domain and the pore domain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Modelos Moleculares , Venenos de Moluscos/química , Venenos de Moluscos/farmacologia , Caramujos/química , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/química
7.
Bioconjug Chem ; 30(11): 2879-2888, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647222

RESUMO

Twenty million Americans suffer from peripheral nerve injury caused by trauma and medical disorders, resulting in a broad spectrum of potentially debilitating side effects. In one out of four cases, patients identify surgery as the root cause of their nerve injury. Particularly during tumor resections or after traumatic injuries, tissue distortion and poor visibility can challenge a surgeon's ability to precisely locate and preserve peripheral nerves. Intuitively, surgical outcomes would improve tremendously if nerves could be highlighted using an exogeneous contrast agent. In clinical practice, however, the current standard of care-visual examination and palpation-remains unchanged. To address this unmet clinical need, we explored the expression of voltage-gated sodium channel Nav1.7 as an intraoperative marker for the peripheral nervous system. We show that expression of Nav1.7 is high in peripheral nerves harvested from both human and mouse tissue. We further show that modification of a Nav1.7-selective peptide, Hsp1a, can serve as a targeted vector for delivering a fluorescent sensor to the peripheral nervous system. Ex vivo, we observe a high signal-to-noise ratio for fluorescently labeled Hsp1a in both histologically prepared and fresh tissue. Using a surgical fluorescent microscope, we show in a simulated clinical scenario that the identification of mouse sciatic nerves is possible, suggesting that fluorescently labeled Hsp1a tracers could be used to discriminate nerves from their surrounding tissues in a routine clinical setting.


Assuntos
Miniproteínas Nó de Cistina/metabolismo , Fluorescência , Imagem Molecular/métodos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Fragmentos de Peptídeos/farmacologia , Nervos Periféricos/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Canal de Sódio Disparado por Voltagem NAV1.7/química , Fragmentos de Peptídeos/química , Nervos Periféricos/efeitos dos fármacos
8.
Methods Mol Biol ; 2012: 29-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161502

RESUMO

Sortase A (SrtA) is an enzyme obtained from Staphylococcus aureus that catalyzes site-specific transpeptidation of surface proteins to the bacterial cell membrane. SrtA recognizes an LPXTG amino acid motif and cleaves between the Thr and Gly to form a thioester-linked acyl-enzyme intermediate. The intermediate is resolved in the presence of a nucleophilic N-terminal polyglycine resulting in ligation of the acyl donor to the polyglycine acceptor. Here we describe the application of SrtA as a tool for the cyclization of disulfide-rich peptides. Reactions are typically tailored to each disulfide-rich peptide with optimal conditions producing yields of 40-50% cyclized peptide.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Dissulfetos/química , Peptídeos Cíclicos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Ciclização , Peptídeos Cíclicos/isolamento & purificação , Especificidade por Substrato
9.
Bioconjug Chem ; 29(10): 3309-3319, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30148615

RESUMO

Gating modifier toxins from spider venom are disulfide-rich peptides that typically comprise a stabilizing inhibitor cystine knot (ICK). These knottin peptides are being pursued as therapeutic leads for a range of conditions linked to transmembrane proteins. Recently, double-knottin peptides discovered in spider venom and produced by recombinant expression have provided insights into the pharmacology of transmembrane channels. Here, we use chemoenzymatic ligation to produce double-knottins to probe the effect of bivalent modulation on the voltage-gated sodium channel subtype 1.7 (NaV1.7), which is implicated in pain signaling. Monovalent knottins were oxidatively folded and then biochemically conjugated using sortase A, to form double-knottins. The structural integrity of the peptides was confirmed using NMR, and fluorescence-based activity assays provided evidence suggesting that coincubated monovalent and bivalent knottins can cooperatively modulate NaV1.7. We anticipate that double-knottins will provide novel tools for enhancing our understanding of, and design strategies for, therapeutically relevant voltage-gated ion channels.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Miniproteínas Nó de Cistina/química , Venenos de Aranha/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Bicamadas Lipídicas/química , Sondas Moleculares , Ressonância Magnética Nuclear Biomolecular , Ressonância de Plasmônio de Superfície
10.
J Biol Chem ; 293(23): 9041-9052, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29703751

RESUMO

Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures and modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here, we examined whether there is a relationship among spider GMT amphipathicity, membrane binding, and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Venenos de Aranha/farmacologia , Toxinas Biológicas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Aranhas/química , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
12.
Toxins (Basel) ; 9(8)2017 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-28805686

RESUMO

Spider gating modifier toxins (GMTs) are potent modulators of voltage-gated ion channels and have thus attracted attention as drug leads for several pathophysiological conditions. GMTs contain three disulfide bonds organized in an inhibitory cystine knot, which putatively confers them with high stability; however, thus far, there has not been a focused study to establish the stability of GMTs in physiological conditions. We examined the resistance of five GMTs including GpTx-1, HnTx-IV, HwTx-IV, PaurTx-3 and SgTx-1, to pH, thermal and proteolytic degradation. The peptides were stable under physiological conditions, except SgTx-1, which was susceptible to proteolysis, probably due to a longer C-terminus compared to the other peptides. In non-physiological conditions, the five peptides withstood chaotropic degradation, and all but SgTx-1 remained intact after prolonged exposure to high temperature; however, the peptides were degraded in strongly alkaline solutions. GpTx-1 and PaurTx-3 were more resistant to basic hydrolysis than HnTx-IV, HwTx-IV and SgTx-1, probably because a shorter interconnecting loop 3 on GpTx-1 and PaurTx-3 may stabilize interactions between the C-terminus and the hydrophobic patch. Here, we establish that most GMTs are exceptionally stable, and propose that, in the design of GMT-based therapeutics, stability can be enhanced by optimizing the C-terminus in terms of length, and increased interactions with the hydrophobic patch.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Venenos de Aranha/química , Aranhas/química , Sequência de Aminoácidos , Animais , Ativação do Canal Iônico , Peptídeos/metabolismo
13.
Neuropharmacology ; 127: 32-45, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28400258

RESUMO

Spider peptide toxins have attracted attention because of their ability to target voltage-gated ion channels, which are involved in several pathologies including chronic pain and some cardiovascular conditions. A class of these peptides acts by modulating the gating mechanism of voltage-gated ion channels and are thus called gating modifier toxins (GMTs). In addition to their interactions with voltage-gated ion channels, some GMTs have affinity for lipid bilayers. This review discusses the potential importance of the cell membrane on the mode of action of GMTs. We propose that peptide-membrane interactions can anchor GMTs at the cell surface, thereby increasing GMT concentration in the vicinity of the channel binding site. We also propose that modulating peptide-membrane interactions might be useful for increasing the therapeutic potential of spider toxins. Furthermore, we explore the advantages and limitations of the methodologies currently used to examine peptide-membrane interactions. Although GMT-lipid membrane binding does not appear to be a requirement for the activity of all GMTs, it is an important feature, and future studies with GMTs should consider the trimolecular peptide-lipid membrane-channel complex. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Bicamadas Lipídicas/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos
14.
Biochim Biophys Acta Biomembr ; 1859(5): 835-844, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28115115

RESUMO

The human voltage-gated sodium channel sub-type 1.7 (hNaV1.7) is emerging as an attractive target for the development of potent and sub-type selective novel analgesics with increased potency and fewer side effects than existing therapeutics. HwTx-IV, a spider derived peptide toxin, inhibits hNaV1.7 with high potency and is therefore of great interest as an analgesic lead. In the current study we examined whether engineering a HwTx-IV analogue with increased ability to bind to lipid membranes would improve its inhibitory potency at hNaV1.7. This hypothesis was explored by comparing HwTx-IV and two analogues [E1PyrE]HwTx-IV (mHwTx-IV) and [E1G,E4G,F6W,Y30W]HwTx-IV (gHwTx-IV) on their membrane-binding affinity and hNaV1.7 inhibitory potency using a range of biophysical techniques including computational analysis, NMR spectroscopy, surface plasmon resonance, and fluorescence spectroscopy. HwTx-IV and mHwTx-IV exhibited weak affinity for lipid membranes, whereas gHwTx-IV showed improved affinity for the model membranes studied. In addition, activity assays using SH-SY5Y neuroblastoma cells expressing hNaV1.7 showed that gHwTx-IV has increased activity at hNaV1.7 compared to HwTx-IV. Based on these results we hypothesize that an increase in the affinity of HwTx-IV for lipid membranes is accompanied by improved inhibitory potency at hNaV1.7 and that increasing the affinity of gating modifier toxins to lipid bilayers is a strategy that may be useful for improving their potency at hNaV1.7.


Assuntos
Bicamadas Lipídicas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/farmacologia , Fenômenos Biofísicos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Venenos de Aranha/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...