Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33348357

RESUMO

The size and quality of chemical libraries to the drug discovery pipeline are crucial for developing new drugs or repurposing existing drugs. Existing techniques such as combinatorial organic synthesis and high-throughput screening usually make the process extraordinarily tough and complicated since the search space of synthetically feasible drugs is exorbitantly huge. While reinforcement learning has been mostly exploited in the literature for generating novel compounds, the requirement of designing a reward function that succinctly represents the learning objective could prove daunting in certain complex domains. Generative adversarial network-based methods also mostly discard the discriminator after training and could be hard to train. In this study, we propose a framework for training a compound generator and learn a transferable reward function based on the entropy maximization inverse reinforcement learning (IRL) paradigm. We show from our experiments that the IRL route offers a rational alternative for generating chemical compounds in domains where reward function engineering may be less appealing or impossible while data exhibiting the desired objective is readily available.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Ensaios de Triagem em Larga Escala
2.
J Biomed Inform ; 110: 103547, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860883

RESUMO

The drug discovery stage is a vital aspect of the drug development process and forms part of the initial stages of the development pipeline. In recent times, machine learning-based methods are actively being used to model drug-target interactions for rational drug discovery due to the successful application of these methods in other domains. In machine learning approaches, the numerical representation of molecules is critical to the performance of the model. While significant progress has been made in molecular representation engineering, this has resulted in several descriptors for both targets and compounds. Also, the interpretability of model predictions is a vital feature that could have several pharmacological applications. In this study, we propose a self-attention-based multi-view representation learning approach for modeling drug-target interactions. We evaluated our approach using three benchmark kinase datasets and compared the proposed method to some baseline models. Our experimental results demonstrate the ability of our method to achieve competitive prediction performance and offer biologically plausible drug-target interaction interpretations.


Assuntos
Desenvolvimento de Medicamentos , Preparações Farmacêuticas , Descoberta de Drogas , Interações Medicamentosas , Aprendizado de Máquina
3.
Sensors (Basel) ; 16(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657084

RESUMO

In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...