Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 17(2): 1253-1271, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32233578

RESUMO

In this paper, we present a mathematical model of the immune response to parasites. The model is a type of predator-prey system in which the parasite serves as the prey and the immune response as the predator. The model idealizes the entire immune response as a single entity although it is comprised of several aspects. Parasite density is captured using logistic growth while the immune response is modeled as a combination of two components, activation by parasite density and an autocatalytic reinforcement process. Analysis of the equilibria of the model demonstrate bifurcations between parasites and immune response arising from the autocatalytic response component. The analysis also points to the steady states associated with disease resolution or persistence in leishmaniasis. Numerical predictions of the model when applied to different cases of Leishmania mexicana are in very close agreement with experimental observations.


Assuntos
Leishmania mexicana , Leishmaniose , Humanos , Sistema Imunitário
2.
Radiat Prot Dosimetry ; 118(1): 28-31, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16046555

RESUMO

A Monte Carlo study of the energy response of an aluminium oxide (Al(2)O(3)) detector in kilovoltage and megavoltage photon beams relative to (60)Co gamma rays has been performed using EGSnrc Monte Carlo simulations. The sensitive volume of the Al(2)O(3) detector was simulated as a disc of diameter 2.85 mm and thickness 1 mm. The phantom material was water and the irradiation depth chosen was 2.0 cm in kilovoltage photon beams and 5.0 cm in megavoltage photon beams. The results show that the energy response of the Al(2)O(3) detector is constant within 3% for photon beam energies in the energy range of (60)Co gamma rays to 25 MV X rays. However, the Al(2)O(3) detector shows an enhanced energy response for kilovoltage photon beams, which in the case of 50 kV X rays is 3.2 times higher than that for (60)Co gamma rays. There is essentially no difference in the energy responses of LiF and Al(2)O(3) detectors irradiated in megavoltage photon beams when these Al(2)O(3) results are compared with literature data for LiF thermoluminescence detectors. However, the Al(2)O(3) detector has a much higher enhanced response compared with LiF detectors in kilovoltage X-ray beams, more than twice as much for the case of 50 kV X rays.


Assuntos
Óxido de Alumínio , Radioisótopos de Cobalto , Fótons , Monitoramento de Radiação/instrumentação , Calibragem , Modelos Estatísticos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...