Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 14: 1206217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389348

RESUMO

Introduction: Sustainable agricultural practices for controlling crop pests are urgently needed to reduce the reliance on chemical pesticides, which have long-term detrimental effects on ecosystems. In this study, we assessed the effectiveness of arbuscular mycorrhizal fungi (AMF) and vermicompost (Vc) supplementation, alone and in combination, in mitigating the negative impacts of Meloidogyne incognita infestation on carrot (Daucus carota L.) growth, development, and physiology. Methods: We measured different plant growth parameters such as plant height and biomass accumulation, several plant physiological parameters such as the levels of photosynthetic pigments, phenolics, and the activity of defense enzymes such as peroxidases and polyphenol oxidases, and evaluated the severity of Meloidogyne incognita nematode infestation on plants treated or not treated with vermicompost (Vc) and/or arbuscular mycorrhizal fungi (AMF). Results: Our findings show that M. incognita significantly affects plant growth, biomass accumulation, and photosynthetic pigment and carotenoid content. The incorporation of Vc and AMF into the soil, either individually or in combination, significantly alleviates the negative effects of nematode infestation on carrot plants. This was accompanied by the induction of phenolic compounds and defense enzymes such as peroxidases (+15.65%) and polyphenol oxidases (29.78%), and by a reduction in the severity of nematode infestation on Vc and AMF-treated plants compared to nematode-infested plants. Principal component analysis (PCA) shows significant correlations between various of the studied parameters. In particular, we observed negative correlations between the application of AMF and Vc alone and in combination and disease severity, and positive correlations between plant growth, photosynthetic pigments phenol content, and activity of defense enzymes. Discussion: Our study highlights the relevance of cultural practices and beneficial microorganisms for the sustainable and environmentally friendly management of agricultural pests.

3.
Plants (Basel) ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376010

RESUMO

Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.

4.
Life (Basel) ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556474

RESUMO

The root-knot nematode Meloidogyne incognita is one of the most damaging plant-parasitic nematodes and is responsible for significant crop losses worldwide. Rising human health and environmental concerns have led to the withdrawal of commonly used chemical nematicides. There has been a tremendous demand for eco-friendly bio-nematicides with beneficial properties to the nematode hosting plants, which encourages the need for alternative nematode management practices. The current study was undertaken to determine the nematicidal potential of cotton seed cake (CSC) against second-stage juvenile (J2) hatching, J2 mortality, and J2 penetration of M. incognita in tomato plants in vitro. J2s and egg masses of M. incognita were exposed to four concentrations (250, 500, 750, and 1000 mg/L) of CSC extracts. The higher J2 mortality and inhibition of J2 hatching were found at 1000 mg/L, while the least effective result was observed at 250 mg/L of the CSC extract. The CSC extract applied with the concentrations mentioned above also showed inhibition of J2 penetration in tomato roots; 1000 mg/L showed the highest inhibition of penetration, while 250 mg/L displayed the least inhibition. Using gas chromatography-mass spectroscopy, we identified 11 compounds, out of which 9,12-Octadecadienoic acid, Hexadecanoic acid, and Tetradecanoic acid were found as major compounds. Subsequently, in silico molecular docking was conducted to confirm the nematicidal behavior of CSC based on binding interactions of the above three major compounds with the targeted protein acetylcholine esterase (AChE) of M. incognita. The values of binding free energy are -5.3, -4.5, and -4.9 kcal/mol, observed for 9,12-Octadecadienoic acid, n-Hexadecanoic acid, and Tetradecanoic acid, respectively, suggesting that 9,12-Octadecadienoic acid binds with the receptor AChE more efficiently than the other two ligands. This study indicates that CSC has nematicidal potential that can be used to control M. incognita for sustainable agriculture.

5.
Front Microbiol ; 13: 985852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090121

RESUMO

Plant-based synthesis of silver nanoparticles (Ag-NPs) has emerged as a potential alternative to traditional chemical synthesis methods. In this context, the aim of the present study was to synthesize Ag-NPs from Cassia fistula (L.) leaf extract and to evaluate their nano-pesticidal potential against major phyto-pathogens of tomato. From the data, it was found that particle size of spherical C. fistula leaf synthesized (Ag@CfL-NPs) varied from 10 to 20 nm, with the average diameter of 16 nm. Ag@CfL-NPs were validated and characterized by UV-visible spectroscopy (surface resonance peak λ max = 430 nm), energy dispersive spectrophotometer (EDX), Fourier transform infrared (FTIR), and X-ray diffraction pattern (XRD), and electron microscopy; scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The FTIR spectra verified the participation of various living molecules (aromatic/aliphatic moieties and proteins) in synthesized Ag@CfL-NPs. The anti-phytopathogenic potential of Ag@CfL-NPs was assessed under in vitro conditions. Increasing doses of Ag@CfL-NPs exhibited an inhibitory effect against bacterial pathogen Pseudomonas syringae and 400 µg Ag@CfL-NPs ml-1 caused a reduction in cellular viability, altered bacterial morphology, and caused cellular death Furthermore, Ag@CfL-NPs reduced exopolysaccharides (EPS) production and biofilm formation by P. syringae Additionally, Ag@CfL-NPs showed pronounced antifungal activity against major fungal pathogens. At 400 µg Ag@CfL-NPs ml-1, sensitivity of tested fungi followed the order: Fusarium oxysporum (76%) > R. solani (65%) > Sarocladium (39%). Furthermore, 400 µg Ag@CfL-NPs ml-1 inhibited the egg-hatching and increased larval mortality of Meloidogyne incognita by 82 and 65%, respectively, over control. Moreover, pot studies were performed to assess the efficacy of Ag@CfL-NPs to phyto-pathogens using tomato (Solanum lycopersicum L.) as a model crop. The applied phyto-pathogens suppressed the biological, physiological, and oxidative-stress responsiveness of tomatoes. However, 100 mg Ag@CfL-NPs kg-1 improved overall performance and dramatically increased the root length, dry biomass, total chlorophyll, carotenoid, peroxidase (POD), and phenylalanine ammonia lyase (PAL) activity over pathogens-challenged tomatoes. This study is anticipated to serve as an essential indication for synthesis of efficient nano-control agents, which would aid in the management of fatal phyto-pathogens causing significant losses to agricultural productivity. Overall, our findings imply that Ag@CfL-NPs as nano-pesticides might be used in green agriculture to manage the diseases and promote plant health in a sustainable way.

6.
Exp Parasitol ; 230: 108176, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740586

RESUMO

Foliar spray of silicon dioxide (SiO2 NPs), zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs) nanoparticles were used for the management of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Foliar spray of SiO2 NPs/ZnO NPs or TiO2 NPs increased plant growth attributes, chlorophyll and carotenoid of carrot. Foliar spray of 0.10 mg ml-1 SiO2 NPs caused the highest increase in plant growth, chlorophyll and carotenoid content of leaves followed by spray of 0.10 mg ml-1 ZnO NPs, 0.05 mg ml-1 SiO2 NPs, 0.05 mg ml-1 ZnO NPs, 0.10 mg ml-1 TiO2 NPs and 0.05 mg ml-1 TiO2 NPs. Use of SiO2 NPs caused a higher reduction in root galling, nematode multiplication and disease indices followed by ZnO NPs and TiO2 NPs. Two principal components analysis showed a total of 97.84% overall data variance in plants inoculated with single pathogen and 97.20% in plants inoculated with two or more pathogens. Therefore, foliar spray of SiO2 NPs appears interesting for the management of disease complex of carrot.


Assuntos
Alternaria/efeitos dos fármacos , Daucus carota , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rhizoctonia/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Aerossóis , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Animais , Carotenoides/análise , Clorofila/análise , Daucus carota/crescimento & desenvolvimento , Daucus carota/microbiologia , Daucus carota/parasitologia , Microscopia de Fluorescência , Nanopartículas/administração & dosagem , Folhas de Planta/química , Análise de Componente Principal , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/patogenicidade , Dióxido de Silício/farmacologia , Titânio/farmacologia , Tylenchoidea/patogenicidade , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...