Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Results Phys ; 29: 104639, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34513577

RESUMO

In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are clustered. In the analysis, the maximum cluster size is treated as a variable and is varied from 5 to 50 in both algorithms to find out an optimum number. The performance and validity indices of the clusters formed are analyzed to assess the quality of clusters. The validity indices to understand all the COVID-19 clusters' quality are analysed based on the Zahid SC (Separation Compaction) index, Xie-Beni Index, Fukuyama-Sugeno Index, Validity function, PC (performance coefficient), and CE (entropy) indexes. The analysis results pointed out that five clusters were identified as a major centroid where the pandemic looks concentrated. Additionally, the observations revealed that mainly the pandemic is distributed easily at any global location, and there are several centroids of COVID-19, which primarily act as epicentres. However, the three main COVID-19 clusters identified are 1) cases with value <50,000, 2) cases with a value between 0.1 million to 2 million, and 3) cases above 2 million. These centroids are located in the US, Brazil, and India, where the rest of the small clusters of the pandemic look oriented. Furthermore, the Fc-M technique seems to provide a much better cluster than the c-M algorithm.

2.
Biomed Mater Eng ; 31(6): 339-349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33252058

RESUMO

BACKGROUND: The left coronary artery commonly known as LCA gets divided into two branches, such as the left circumflex (LCX) and left anterior descending (LAD) at a particular angle. This angle is varies from person to person. The present computational study contributes remarkable expertise about the influence of this angle variation on the hemodynamic parameters in the presence of 80% area stenosis at the LAD branch. OBJECTIVE: This study aimed to compare the effect of the bifurcation angle on hemodynamic parameters in the left coronary artery with 80% stenosis. METHOD: Computational models of left coronary bifurcation angles of 30°, 60°, 90°, 120° were developed to understand the flow behavior of left coronary artery branches. The 80% area stenosis (AS) is considered at the LAD branch immediate to bifurcation. RESULTS: Measurements of pressure, velocity and wall shear stress were carried out corresponding to various bifurcation angles. It was found that the drop-in pressure increases as the angle increases from narrow to wider. A slight elevation in the velocity at the stenosis was observed. In addition, the obtained results further reveal a recirculation region immediately after the plaque, which leads to more deposition of plaque in the flow obstructed area. It is known that the shear stress at the arterial wall across the stenosis increases as the angle of bifurcation increases from narrow to wider. CONCLUSIONS: The bifurcation of the left coronary artery and size of the stenosis have a notable impact on the pressure and wall shear stress. These two factors should be given due consideration by cardiologists to assess the complexity of stenosis in the LCA branches.


Assuntos
Estenose Coronária , Constrição Patológica , Angiografia Coronária , Vasos Coronários , Hemodinâmica , Humanos , Placa Aterosclerótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...