Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 855: 147086, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535461

RESUMO

BACKGROUND: Osteosarcoma is common type of bone cancer; however, the prognosis of patients with metastatic osteosarcoma is poor. As a new inhibitory immune checkpoint molecule, HHLA2 is upregulated in osteosarcoma. Herein, we studied the significance of tumor-intrinsic HHLA2 in MG-63 growth. Also, we examined the influence of combined therapy of HHLA2 knockdown with paclitaxel on the apoptosis, cell cycle, migration, and stemness of MG-63 cells. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed to study the half-maximal inhibitory concentration (IC50) of paclitaxel and the cytotoxicity of HHLA2-small interfering RNA (siRNA) on MG-63 cells. The apoptosis and cell cycle were analyzed using flow cytometry. The wound-healing and colony formation assays were conducted to investigate the effect of paclitaxel and HHLA2 knockdown on the migration and stemness of MG-63 cells, respectively. QRT-PCR was used to determine the Bax, caspase-3, and Bcl-2 mRNA expression levels. RESULTS: HHLA2 silencing has enhanced the chemosensitivity of MG-63 cells to paclitaxel. Besides, HHLA2 knockdown has increased the paclitaxel-induced cytotoxic effect on MG-63 cells. In terms of stimulating apoptosis, decreasing clonogenicity, halting the cell cycle at the sub G1 phase, and inhibiting migration, tumor-intrinsic HHLA2 silencing has increased these anti-tumor effects of paclitaxel on MG-63 cells. Besides, HHLA2 knockdown has potentiated paclitaxel-mediated Bcl-2 downregulation and paclitaxel-mediated caspase-3 and Bax upregulation in MG-63 cells. CONCLUSION: Tumor-intrinsic HHLA2 knockdown increases the anti-tumoral effect of paclitaxel on MG-63 cells and enhances the chemosensitivity of MG-63 cells to paclitaxel.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Paclitaxel/farmacologia , Caspase 3 , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Apoptose/genética , Neoplasias Ósseas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Imunoglobulinas/metabolismo , Imunoglobulinas/farmacologia
2.
Front Med (Lausanne) ; 9: 1027758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388933

RESUMO

Background: The programmed death-ligand 1 (PD-L1)/PD-1 axis is one of the well-established inhibitory axes in regulating immune responses. Besides the significance of tumor-intrinsic PD-L1 expression in immune evasion, its oncogenic role has been implicated in various malignancies, like non-small cell lung cancer (NSCLC). As small non-coding RNAs, microRNAs (miRs) have pivotal roles in cancer biology. The current study aimed to systematically review the current knowledge about the significance of PD-L1-inhibiting miRs in NSCLC inhibition and their underlying mechanisms. Materials and methods: We conducted the current scoping review based on the PRISMA-ScR statement. We systematically searched Embase, Scopus, Web of Science, PubMed, Ovid, EBSCO, ProQuest, Cochrane Library, African Index Medicus, and Pascal-Francis up to 4 April 2021. We also performed in silico tumor bulk RNA sequencing and single-cell RNA sequencing to further the current knowledge of the non-coding RNA-mediated tumor-intrinsic PD-L1 regulation and the PD-L1/PD-1 axis in NSCLC. Results: The ectopic expression of hsa-miR-194-5p, hsa-miR-326, hsa-miR-526b-3p, hsa-miR-34a-5p, hsa-miR-34c-5p, hsa-miR-138-5p, hsa-miR-377-3p, hsa-let-7c-5p, hsa-miR-200a-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, and hsa-miR-197-3p, as PD-L1-inhibiting miR, inhibits NSCLC development. These PD-L1-inhibiting miRs can substantially regulate the cell cycle, migration, clonogenicity, invasion, apoptosis, tumor chemosensitivity, and host anti-tumoral immune responses. Based on single-cell RNA sequencing results, PD-L1 inhibition might liberate the tumor-infiltrated CD8+ T-cells and dendritic cells (DCs)-mediated anti-tumoral immune responses via disrupting the PD-L1/PD-1 axis. Conclusion: Given the promising preclinical results of these PD-L1-inhibiting miRs in inhibiting NSCLC development, their ectopic expression might improve NSCLC patients' prognosis; however, further studies are needed to translate this approach into clinical practice.

3.
Metab Brain Dis ; 37(4): 1175-1184, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075501

RESUMO

Schizophrenia (SCZ) is known as a complicated mental disease with an unknown etiology. The microdeletion of 22q11.2 is the most potent genetic risk factor. Researchers are still trying to find which genes in the deletion region are linked to SCZ. MIR185, encoding microRNA (miR)-185, is present in the minimal 1.5 megabase deletion. Nonetheless, the miR-185 expression profile and its corresponding target genes in animal models and patients with 22q11.2 deletion syndrome (22q11.2DS) imply that more study is required about miR-185 and its corresponding downstream pathways within idiopathic SCZ. The expression of hsa-miR-185-5p and its corresponding target gene, shisa family member 7 (SHISA7), sometimes called CKAMP59, were evaluated in the peripheral blood (PB) samples of Iranian Azeri patients with idiopathic SCZ and healthy subjects, matched by gender and age as control groups by quantitative polymerase chain reaction (qPCR). Fifty SCZ patients (male/female: 22/28, age (mean ± standard deviation (SD)): 35.9 ± 5.6) and 50 matched healthy controls (male/female: 23/27, age (mean ± SD): 34.7 ± 5.4) were enrolled. The expression of hsa-miR-185-5p in the PB samples from subjects with idiopathic SCZ was substantially lower than in that of control groups (posterior beta = -0.985, adjusted P-value < 0.0001). There was also a difference within the expression profile between female and male subgroups (posterior beta = -0.86, adjusted P-value = 0.046 and posterior beta = -1.015, adjusted P-value = 0.004, in turn). Nevertheless, no significant difference was present in the expression level of CKAMP59 between PB samples from patients and control groups (adjusted P-value > 0.999). The analysis of the receiver operating characteristic (ROC) curve suggested that hsa-miR-185-5p may correctly distinguish subjects with idiopathic SCZ from healthy people (the area under curve (AUC) value: 0.722). Furthermore, there was a strong positive correlation between the expression pattern of the abovementioned genes in patients with SCZ and healthy subjects (r = 0.870, P < 0.001 and r = 0.812, P < 0.001, respectively), indicating that this miR works as an enhancer. More research is needed to determine if the hsa-miR-185-5p has an enhancer activity. In summary, this is the first research to highlight the expression of the miR-185 and CKAMP59 genes in the PB from subjects with idiopathic SCZ. Our findings suggest that gene expression alterations mediated by miR-185 may play a role in the pathogenesis of idiopathic and 22q11.2DS SCZ. It is worth noting that, despite a substantial and clear relationship between CKAMP59 and hsa-miR-185-5p, indicating an interactive network, their involvement in the development of SCZ should be reconsidered based on the whole blood sample since the changed expression level of CKAMP59 was not significant. Further research with greater sample sizes and particular leukocyte subsets can greatly make these results stronger.


Assuntos
Síndrome de DiGeorge , MicroRNAs , Esquizofrenia , Adulto , Animais , Síndrome de DiGeorge/genética , Regulação para Baixo , Feminino , Humanos , Irã (Geográfico) , Masculino , MicroRNAs/metabolismo , Esquizofrenia/genética
4.
Sci Rep ; 11(1): 24413, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952924

RESUMO

Schizophrenia (SCZ) is a serious psychiatric condition with a 1% lifetime risk. SCZ is one of the top ten global causes of disabilities. Despite numerous attempts to understand the function of genetic factors in SCZ development, genetic components in SCZ pathophysiology remain unknown. The competing endogenous RNA (ceRNA) network has been demonstrated to be involved in the development of many kinds of diseases. The ceRNA hypothesis states that cross-talks between coding and non-coding RNAs, including long non-coding RNAs (lncRNAs), via miRNA complementary sequences known as miRNA response elements, creates a large regulatory network across the transcriptome. In the present study, we developed a lncRNA-related ceRNA network to elucidate molecular regulatory mechanisms involved in SCZ. Microarray datasets associated with brain regions (GSE53987) and lymphoblasts (LBs) derived from peripheral blood (sample set B from GSE73129) of SCZ patients and control subjects containing information about both mRNAs and lncRNAs were downloaded from the Gene Expression Omnibus database. The GSE53987 comprised 48 brain samples taken from SCZ patients (15 HPC: hippocampus, 15 BA46: Brodmann area 46, 18 STR: striatum) and 55 brain samples taken from control subjects (18 HPC, 19 BA46, 18 STR). The sample set B of GSE73129 comprised 30 LB samples (15 patients with SCZ and 15 controls). Differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the limma package of the R software. Using DIANA-LncBase, Human MicroRNA Disease Database (HMDD), and miRTarBase, the lncRNA- associated ceRNA network was generated. Pathway enrichment of DEmRNAs was performed using the Enrichr tool. We developed a protein-protein interaction network of DEmRNAs and identified the top five hub genes by the use of STRING and Cytoscape, respectively. Eventually, the hub genes, DElncRNAs, and predictive miRNAs were chosen to reconstruct the subceRNA networks. Our bioinformatics analysis showed that twelve key DEmRNAs, including BDNF, VEGFA, FGF2, FOS, CD44, SOX2, NRAS, SPARC, ZFP36, FGG, ELAVL1, and STARD13, participate in the ceRNA network in SCZ. We also identified DLX6-AS1, NEAT1, MINCR, LINC01094, DLGAP1-AS1, BABAM2-AS1, PAX8-AS1, ZFHX4-AS1, XIST, and MALAT1 as key DElncRNAs regulating the genes mentioned above. Furthermore, expression of 15 DEmRNAs (e.g., ADM and HLA-DRB1) and one DElncRNA (XIST) were changed in both the brain and LB, suggesting that they could be regarded as candidates for future biomarker studies. The study indicated that ceRNAs could be research candidates for investigating SCZ molecular pathways.


Assuntos
Biologia Computacional/métodos , RNA Longo não Codificante/metabolismo , Esquizofrenia/genética , Biomarcadores/metabolismo , Humanos
5.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800752

RESUMO

The members of the B7 family, as immune checkpoint molecules, can substantially regulate immune responses. Since microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules, i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing receptor 2 (ILDR2). The current study was performed using a six-stage methodology structure and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, Scopus, Cochrane, ProQuest, and Google Scholar were systematically searched to obtain the relevant records to 5 November 2020. Two authors independently reviewed the obtained records and extracted the desired data. After quantitative and qualitative analyses, we used bioinformatics approaches to extend our knowledge about the regulatory cross-talk between miRs and the abovementioned B7 family members. Twenty-seven articles were identified that fulfilled the inclusion criteria. Studies with different designs reported gene-miR regulatory axes in various cancer and non-cancer diseases. The regulatory cross-talk between the aforementioned B7 family molecules and miRs might provide valuable insights into the pathogenesis of various human diseases.


Assuntos
Antígenos B7/fisiologia , Proteínas de Checkpoint Imunológico/fisiologia , MicroRNAs/fisiologia , Antígenos B7/genética , Antígenos B7/imunologia , Coagulação Sanguínea , Quimiocinas/fisiologia , Ativação do Complemento , Biologia Computacional/métodos , Doença/genética , Redes Reguladoras de Genes , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/imunologia , MicroRNAs/genética , Transdução de Sinais
6.
Arch Virol ; 166(3): 675-696, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462671

RESUMO

The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.


Assuntos
COVID-19/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/fisiologia , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Inflamação/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , NF-kappa B/metabolismo , SARS-CoV-2/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Tratamento Farmacológico da COVID-19
7.
Biomed Pharmacother ; 131: 110793, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152950

RESUMO

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is a genetic neurological condition characterized by extreme cerebellar atrophy. PEHO-Like syndrome is comparable to PEHO syndrome, with the exception that there is no typical neuro-radiologic or neuro-ophthalmic findings. PEHO spectrum disorders are highly clinically and genetically heterogeneous, and this has challenged their diagnosis. This scoping review aims to summarize and discuss common clinical and genetic features of these syndromes to help future researches. This study was performed according to a six-stage methodology structure and PRISMA guideline. A systematic search of seven databases was performed to find eligible publications prior to June 2020. Articles screening and data extraction were independently performed by two reviewers and quantitative and qualitative analyses were conducted. Thirty-eight articles were identified that fulfill the inclusion criteria. Cerebellar atrophy was the main clinical difference between the two groups but data on optic atrophy and infantile spasms/hypsarrhythmia were not consistent with the previously essential diagnostic criteria. Genetic analysis was performed in several studies, leading to identification of pathogenic variants in different genes that caused these conditions due to different mechanisms. Genetic studies could revolutionize the diagnosis process and our understanding of the etiology of this challenging group of patients by providing targeted sequencing panels and exome- or genome-scale studies in the future.


Assuntos
Edema Encefálico/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Atrofia Óptica/fisiopatologia , Espasmos Infantis/fisiopatologia , Edema Encefálico/diagnóstico , Edema Encefálico/genética , Cerebelo/patologia , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...