Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 30(3): 336-346, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650887

RESUMO

BACKGROUND: Stress reactivity (SR) is associated with increased risk of flares in ulcerative colitis (UC) patients. Because both preclinical and clinical data support that stress can influence gut microbiome composition and function, we investigated whether microbiome profiles of SR exist in UC. METHODS: Ninety-one UC subjects in clinical and biochemical remission were classified into high and low SR groups by questionnaires. Baseline and longitudinal characterization of the intestinal microbiome was performed by 16S rRNA gene sequencing and fecal and plasma global untargeted metabolomics. Microbe, fecal metabolite, and plasma metabolite abundances were analyzed separately to create random forest classifiers for high SR and biomarker-derived SR scores. RESULTS: High SR reactivity was characterized by altered abundance of fecal microbes, primarily in the Ruminococcaceae and Lachnospiraceae families; fecal metabolites including reduced levels of monoacylglycerols (endocannabinoid-related) and bile acids; and plasma metabolites including increased 4-ethyl phenyl sulfate, 1-arachidonoylglycerol (endocannabinoid), and sphingomyelin. Classifiers generated from baseline microbe, fecal metabolite, and plasma metabolite abundance distinguished high vs low SR with area under the receiver operating characteristic curve of 0.81, 0.83, and 0.91, respectively. Stress reactivity scores derived from these classifiers were significantly associated with flare risk during 6 to 24 months of follow-up, with odds ratios of 3.8, 4.1, and 4.9. Clinical flare and intestinal inflammation did not alter fecal microbial abundances but attenuated fecal and plasma metabolite differences between high and low SR. CONCLUSIONS: High SR in UC is characterized by microbial signatures that predict clinical flare risk, suggesting that the microbiome may contribute to stress-induced UC flares.


Assuntos
Colite Ulcerativa , Humanos , Endocanabinoides , RNA Ribossômico 16S , Ácidos e Sais Biliares , Clostridiales
2.
Clin Gastroenterol Hepatol ; 21(3): 741-749.e3, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35952942

RESUMO

BACKGROUND & AIMS: Although perceived stress (PS) has been associated with symptomatic flares in inflammatory bowel disease, clinical and physiological measures associated with perceived stress and flare are not known. The aim of this study was to identify physiological factors associated with perceived stress in ulcerative colitis (UC) subjects, and their relationship with flare. METHODS: Patients with UC in clinical remission (Simple Colitis Clinical Activity Index [SCCAI] score <5) underwent clinical and behavioral assessments, morning salivary cortisol measurements, autonomic nervous system activity testing (heart rate variability, electrodermal activity) at baseline with patient-reported SCCAI every 2 weeks over 1 to 2 years and fecal calprotectin at time of flare. Clinical flares (SCCAI ≥5) and biochemical flares (SCCAI ≥5 with fecal calprotectin ≥250 µg/g) were evaluated. RESULTS: One hundred ten patients with UC were enrolled, with mean follow-up of 65.6 weeks. Patients with UC with higher and lower PS were determined. Although the high PS group had 3.6 times higher odds of a clinical flare than the low PS group, no significant differences in biochemical flares were observed between the low and high PS groups. The high vs low PS group differed in tonic sympathetic arousal as indexed by significantly greater baseline electrodermal activity (4.3 vs 3.4 microsiemens; P = .026) in the high PS group, but not in terms of heart rate variability and morning cortisol levels. Increased fecal calprotectin was associated with cardioautonomic measures, suggesting lower parasympathetic activity. CONCLUSIONS: Increased PS assessed at baseline is associated with tonic sympathetic arousal and greater odds of clinical flares in patients with UC.


Assuntos
Colite Ulcerativa , Estresse Psicológico , Exacerbação dos Sintomas , Humanos , Colite Ulcerativa/fisiopatologia , Colite Ulcerativa/psicologia , Fezes/química , Hidrocortisona , Doenças Inflamatórias Intestinais/fisiopatologia , Doenças Inflamatórias Intestinais/psicologia , Complexo Antígeno L1 Leucocitário , Estresse Psicológico/fisiopatologia
3.
Epilepsy Behav ; 134: 108860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914438

RESUMO

It has been well established that traumatic brain injury (TBI) modifies the composition of gut microbiome. Epilepsy, which represents one of the common sequelae of TBI, has been associated with dysbiosis. Earlier study showed that the risk of post-traumatic epilepsy (PTE) after lateral fluid percussion injury (LFPI) in rats can be stratified based on pre-existing (i.e., pre-TBI) gut microbiome profile. In the present study, we examined whether fecal microbiota transfer (FMT) from naïve rats with different prospective histories of PTE would affect the trajectory of PTE in recipients. Fecal samples were collected from naïve adult male Sprague-Dawley rats, followed by LFPI. Seven months later, upon four weeks of vide-EEG monitoring (vEEG), the rats were categorized as those with and without PTE. Recipients were subjected to LFPI, followed by FMT from donors with and without impending PTE. Control groups included auto-FMT and no-FMT subjects. Seven month after LFPI, recipients underwent four-week vEEG to detect spontaneous seizures. After completing vEEG, rats of all groups underwent kindling of basolateral amygdala. Fecal microbiota transfer from donors with impending PTE exerted mild-to-moderate pro-epileptic effects in recipients, evident as marginal increase in multiple spontaneous seizure incidence, and facilitation of kindling. Analysis of fecal samples in selected recipients and their respective donors confirmed that FMT modified microbiota in recipients along the donors' lines, albeit without full microbiome conversion. The findings provide further evidence that gut microbiome may actively modulate the susceptibility to epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Transplante de Microbiota Fecal , Humanos , Masculino , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Convulsões
4.
Nutrients ; 14(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277029

RESUMO

Kombucha is an increasingly popular functional beverage that has gained attention for its unique combination of phytochemicals, metabolites, and microbes. Previous chemical and microbial composition analyses of kombucha have mainly focused on understanding their changes during fermentation. Very limited information is available regarding nutrient profiles of final kombucha products in the market. In this study, we compared the major chemicals (tea polyphenols, caffeine), antioxidant properties, microbial and metabolomic profiles of nine commercial kombucha products using shotgun metagenomics, internal transcribed spacer sequencing, untargeted metabolomics, and targeted chemical assays. All of the nine kombucha products showed similar acidity but great differences in chemicals, metabolites, microbes, and antioxidant activities. Most kombucha products are dominated by the probiotic Bacillus coagulans or bacteria capable of fermentation including Lactobacillus nagelii, Gluconacetobacter, Gluconobacter, and Komagataeibacter species. We found that all nine kombuchas also contained varying levels of enteric bacteria including Bacteroides thetaiotamicron, Escherischia coli, Enterococcus faecalis, Bacteroides fragilis, Enterobacter cloacae complex, and Akkermansia muciniphila. The fungal composition of kombucha products was characterized by predominance of fermenting yeast including Brettanomyces species and Cyberlindnera jadinii. Kombucha varied widely in chemical content assessed by global untargeted metabolomics, with metabolomic variation being significantly associated with metagenomic profiles. Variation in tea bases, bacteria/yeast starter cultures, and duration of fermentation may all contribute to the observed large differences in the microbial and chemical profiles of final kombucha products.


Assuntos
Polifenóis , Leveduras , Bactérias/metabolismo , Bebidas/análise , Fermentação , Polifenóis/análise , Leveduras/metabolismo
5.
Front Nutr ; 8: 718661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307440

RESUMO

Background: The microbiome has been shown in pre-clinical and epidemiological studies to be important in both the development and treatment of obesity and metabolic associated fatty liver disease (MAFLD). However, few studies have examined the role of the microbiome in the clinical response to calorie restriction. To explore this area, we performed a prospective study examining the association of the intestinal microbiome with weight loss and change in hepatic steatosis on a calorie-restricted diet. Methods: A prospective dietary intervention study of 80 overweight and obese participants was performed at the Greater West Los Angeles Veterans Affair Hospital. Patients were placed on a macronutrient standardized diet for 16 weeks, including 14 weeks of calorie restriction (500 calorie deficit). Body composition analysis by impedance, plasma lipid measurements, and ultrasound elastography to measure hepatic steatosis were performed at baseline and week 16. Intestinal microbiome composition was assessed using 16S rRNA gene sequencing. A per protocol analysis was performed on all subjects completing the trial (n = 46). Results: Study completers showed significant reduction in weight, body mass index, total cholesterol, low density lipoprotein, and triglyceride. Subjects who lost at least 5% of their body weight had significantly greater reduction in serum triglyceride and hepatic steatosis than those with <5% body weight loss. Enterococcus and Klebsiella were reduced at the end of the trial while Coprococcus and Collinsella were increased. There were also significant baseline microbiome differences between patients who had at least 5% weight loss as compared to those that did not. Lachnoclostridium was positively associated with hepatic steatosis and Actinomyces was positively associated with hepatic steatosis and weight. Baseline microbiome profiles were able to predict which patients lost at least 5% of their body weight with an AUROC of 0.80. Conclusion: Calorie restriction alters the intestinal microbiome and improves hepatic steatosis in those who experience significant weight loss. Baseline microbiome differences predict weight loss on a calorie-restricted diet and are associated with improvement in hepatic steatosis, suggesting a role of the gut microbiome in mediating the clinical response to calorie restriction.

6.
Hepatoma Res ; 7(37)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36713356

RESUMO

Aim: The microbiome has been shown to be pivotal in the development of metabolic associated fatty liver disease (MAFLD). Few have examined the relationship of the microbiome specifically with steatosis grade. Therefore, our aim was to characterize the association of the microbiome with MAFLD steatosis severity while adjusting for metabolic comorbidities including diabetes. Methods: We enrolled patients with MAFLD at the West Los Angeles Veterans Affair Hospital. All patients underwent ultrasound elastography, fasting serum collection, and fecal sampling for 16S sequencing. We examined the associations of microbial diversity and composition with advanced steatosis, defined as a CAP score of ≥ 300 dB/m, with or without the presence of metabolic comorbidities. Results: Seventy-five patients were enrolled. African American were less likely to have advanced steatosis than either Hispanics or Whites (P = 0.001). Patients with more advanced steatosis had higher fasting serum triglyceride (192.6 ± 157.1 mg/dL vs. 122.5 ± 57.4 mg/dL), HbA1c (6.7% ± 1.4% vs. 6.1% ± 0.8%), transaminases, and were more likely to have metabolic syndrome (52.4% vs. 24.2%, P = 0.02). Advanced steatosis and diabetes were associated with altered microbial composition. Bacteroides was negatively associated with advanced steatosis while Megasphaera was positively associated with steatosis. Akkermansia was negatively associated with diabetes, while Anaerostipes and Parabacteroides were positively associated with diabetes. Conclusion: Diabetes and metabolic syndrome are associated with hepatic steatosis severity in MAFLD patients and both advanced steatosis and comorbid diabetes are independently associated with microbiome changes. These results provide insight into the role of the gut microbiome in MAFLD associated with metabolic syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...