Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 272(11): 7482-7, 1997 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-9054450

RESUMO

Gelatinase A (GL-A) is a matrix metalloproteinase (MMP) involved in both connective tissue remodeling and tumor invasion. GL-A activation is mediated by a membrane-type MMP (MT-MMP) that cleaves the GL-A propeptide. In this study, we examined the role of the actin cytoskeleton in regulating GL-A activation and MT-MMP-1 expression. Human palmar fascia fibroblasts and human fetal lung fibroblasts were cultured on a planar substratum or within different types of collagen lattices. Fibroblasts that formed stress fibers, either on a planar substratum or within an attached collagen lattice, showed reduced GL-A activation compared with fibroblasts lacking stress fibers, within either floating or stress-released collagen lattices. To determine whether changes in the organization of the actin cytoskeleton could promote GL-A activation, fibroblasts with stress fibers were treated with cytochalasin D. Within 24 h after treatment, GL-A activation was dramatically increased. Associated with this GL-A activation was an increase in MT-MMP-1 mRNA as determined by Northern blot analysis. Treatment with nocodazole, which induced microtubule depolymerization and cell shape changes without affecting stress fibers, did not promote GL-A activation. These results suggest that the extracellular matrix and the actin cytoskeleton transduce signals that modulate GL-A activation and regulate tissue remodeling.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Gelatinases/metabolismo , Metaloendopeptidases/metabolismo , Actinas/ultraestrutura , Células Cultivadas , Citoesqueleto/ultraestrutura , Ativação Enzimática , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Metaloproteinase 2 da Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...