Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26529780

RESUMO

Network component analysis (NCA) is an important method for inferring transcriptional regulatory networks (TRNs) and recovering transcription factor activities (TFAs) using gene expression data, and the prior information about the connectivity matrix. The algorithms currently available crucially depend on the completeness of this prior information. However, inaccuracies in the measurement process may render incompleteness in the available knowledge about the connectivity matrix. Hence, computationally efficient algorithms are needed to overcome the possible incompleteness in the available data. We present a sparse network component analysis algorithm (sparseNCA), which incorporates the effect of incompleteness in the estimation of TRNs by imposing an additional sparsity constraint using the norm, which results in a greater estimation accuracy. In order to improve the computational efficiency, an iterative re-weighted method is proposed for the NCA problem which not only promotes sparsity but is hundreds of times faster than the norm based solution. The performance of sparseNCA is rigorously compared to that of FastNCA and NINCA using synthetic data as well as real data. It is shown that sparseNCA outperforms the existing state-of-the-art algorithms both in terms of estimation accuracy and consistency with the added advantage of low computational complexity. The performance of sparseNCA compared to its predecessors is particularly pronounced in case of incomplete prior information about the sparsity of the network. Subnetwork analysis is performed on the E.coli data which reiterates the superior consistency of the proposed algorithm.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Modelos Estatísticos , Fatores de Transcrição , Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
2.
Bioinformatics ; 29(19): 2410-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23940252

RESUMO

MOTIVATION: Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. RESULTS: We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. AVAILABILITY: The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA


Assuntos
Algoritmos , Fatores de Transcrição/análise , Ciclo Celular , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Redes Neurais de Computação , Dinâmica não Linear , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...