Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 172, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379184

RESUMO

PURPOSE: Verticillium wilt is a destructive vascular disease in eggplants. The complex defensive mechanisms of eggplant against this disease are very limited. METHODS: Our work examined the bioactive properties of garlic allelochemical diallyl disulfide (DADS) as potential biostimulants for defense against V. dahliae in eggplant seedlings. We, therefore, foliar sprayed DADS on eggplants to study the defense response during the early biotrophic phase of V. dahliae (a hemibiotroph). RESULTS: DADS application significantly increased root peroxidase (POD), phenylalanine-ammonia lyase (PAL) enzyme activity, and reduced H2O2 levels after 24 h of fungal inoculation. Salicylic acid (SA) in leaves and roots was significantly increased while, the jasmonic acid (JA), indole acetic acid (IAA), and abscisic acid (ABA) levels were decreased. The microscopic examinations of V. dahliae infection in roots displayed that the progression of infection was restricted in DADS-treated plants. Depositions of lignin and phenolic compounds such as ferulic acid, p-coumaric acid, and caffeic acid content were significantly higher in DADS-treated plants at 48 h post-inoculation. Similarly, the DADS application up-regulated pathogenesis-related (PR1, PR2, and PR5), mitogen-activated protein kinase (MPK1), and lipoxygenase (LOX) genes. Furthermore, DADS-treated plants exhibited a lower disease severity index (23.3% vs. 57.0% in controls), indicating successful defense against V. dahliae. CONCLUSIONS: Our findings concluded that the biological function of garlic allelochemical DADS has a prominent role in the higher defense resistance of eggplants during the early infection of V. dahliae.


Assuntos
Solanum melongena , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/análogos & derivados , Compostos Alílicos , Dissulfetos , Peróxido de Hidrogênio , Verticillium
2.
Microb Ecol ; 83(4): 971-988, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34309697

RESUMO

Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant's growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system.


Assuntos
Micorrizas , Antioxidantes/metabolismo , Clorofila A/metabolismo , Secas , Eletrólitos/metabolismo , Minerais/metabolismo , Micorrizas/fisiologia , Estado Nutricional , Fotossíntese , Raízes de Plantas/microbiologia , Nicotiana
3.
BMC Plant Biol ; 21(1): 241, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049491

RESUMO

PURPOSE: Water scarcity is expected to extend to more regions of the world and represents an alarming threat to food security worldwide. Under such circumstances, water holding capacity is an important agronomic trait, which is primarily controlled by soil texture. METHODS: Our work examined three different soil textures from three cities of Shaanxi Province in China, i.e., silt-sandy loam from Yulin (north of Shaanxi), loam-clay loam from Yangling (middle and western part of Shaanxi), and clay loam-clay from Hanzhong soil (south of Shaanxi), at two moisture levels, i.e., field capacity of 70-75% (well-watered) and 50-55% (water deficit). RESULTS: The differences in soil particle sizes altered the soil physiochemical properties and soil enzymatic activities. Soil urease and ß-glucosidase activities were significantly higher in the Yangling soil under the well-watered treatment, while the differences were nonsignificant under the water deficit conditions. The leaf photosynthesis rate and total chlorophyll content were significantly higher in Hanzhong soil after 15 days of treatment; however, the overall highest plant length, root cortex diameter, and xylem element abundance were significantly higher in Yangling soil under the water deficit conditions. Furthermore, comparable differences were observed in antioxidant defence enzymes and endogenous hormones after every 15 days of treatments. The auxin, gibberellic acid and cytokinin concentrations in leaves and roots were comparably high in Yangling soil, while the abscisic acid concentrations were higher in Hanzhong soil under the water deficit conditions. CONCLUSIONS: Our findings concluded that soil compaction has a significant role not only in root morphology, growth, and development but also in the soil physicochemical properties and nutrient cycle, which are useful for the growth and development of tomato plants.


Assuntos
Ácido Abscísico/metabolismo , Fotossíntese , Solanum lycopersicum/fisiologia , Água/metabolismo , Folhas de Planta/fisiologia , Solo/química , Xilema/fisiologia
4.
Ecotoxicol Environ Saf ; 215: 112132, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33743403

RESUMO

Aqueous garlic extracts (AGE) and garlic allelochemical diallyl disulfide (DADS) have been recently reported to bear bioactive properties to stimulate plant growth and development and alter defense-related physiology. We, therefore, performed a bioassay to study these chemicals as possible biostimulants for defense against Verticillium dahliae in eggplant seedlings. AGE and DADS were applied as a foliar application to the eggplants and samples were collected before and after pathogen inoculation at various intervals to analyze the defense mechanism. The obtained data revealed that with the application of AGE and DADS, the seedlings showed responses including activation of antioxidant enzymes, an abundance of chlorophyll contents, alteration of photosynthesis system, and accumulation of plant hormones compared to the control plants. Furthermore, the microscopic analysis of the AGE or DADS treated plants showed high variability in pathogen density within the root crown at 28 days post-inoculation. The low abundance of reactive oxygen species was noticed in AGE or DADS treated plants, which indicates that the plants were able to successfully encounter pathogen attacks. The AGE and DADS treated plants exhibited a lower disease severity index (32.4% and 24.8% vs 87.1% in controls), indicating successful defense against Verticillium infection. Our results were therefore among the first to address the biostimulatory effects of AGE or DADS to induce resistance in eggplant seedlings against V. dahliae and may be used to establish preparation for garlic-derived bioactive compounds to improve growth and defense responses of eggplants under-protected horticultural situations such as glasshouse or plastic tunnels system.


Assuntos
Alho , Feromônios/farmacologia , Solanum melongena/fisiologia , Verticillium/efeitos dos fármacos , Compostos Alílicos , Antioxidantes/farmacologia , Ascomicetos , Dissulfetos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas , Reguladores de Crescimento de Plantas , Espécies Reativas de Oxigênio , Plântula/efeitos dos fármacos , Solanum melongena/efeitos dos fármacos , Verticillium/fisiologia
5.
Antioxidants (Basel) ; 9(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178294

RESUMO

The effects of aqueous garlic extracts (AGEs), diallyl disulfide (DADS), and allicin (AAS) were investigated during seed-to-seedling transition of tomato. Independent bioassays were performed including seed priming with AGE (0, 100, and 200 µg∙mL-1), germination under the allelochemical influence of AGE, DADS, and AAS, and germination under volatile application of AGE. Noticeable differences in germination indices and seedling growth (particularly root growth and fresh weights) were observed in a dose-dependent manner. When germinated under 50 mM NaCl, seeds primed with AGE exhibited induced defense via antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), lipid peroxidation (malondialdehyde content (MDA)), and H2O2 scavenging. Enzyme-linked immunosorbent analysis (ELISA) of the endogenous phytohormones auxin (IAA), abscisic acid (ABA), cytokinin (ZR), and gibberellic acid (GA3) in the roots and shoots of the obtained seedlings and the relative expression levels of auxin-responsive protein (IAA2), like-auxin (LAX5), mitogen-activated protein kinase (MAPK7 and MPK2), respiratory burst oxidase homolog (RBOH1), CHI3 and SODCC1 suggested allelopathic functions in stimulating growth responses. Our findings suggest that garlic allelochemicals act as plant biostimulants to enhance auxin biosynthesis and transportation, resulting in root growth promotion. Additionally, the relative expressions of defense-related genes, antioxidant enzymes activities and phytohormonal regulations indicate activation of the defense responses in tomato seedlings resulting in better growth and development. These results, thus, provide a basis to understand the biological functions of garlic allelochemicals from the induced resistance perspective in plants.

6.
Front Plant Sci ; 11: 615942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584756

RESUMO

Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.

7.
Plants (Basel) ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888068

RESUMO

The strategic role of phytohormones and arbuscular mycorrhizal fungi (AMF) to overcome various stress conditions is gaining popularity in sustainable agricultural practices. This current study aims to investigate and identify the protective roles of 28-homobrassinolide (HBL) and Glomus versiforme on two cucumber cultivars (salt sensitive Jinyou 1# and tolerant Chanchun mici (CCMC)) grown under saline conditions (100 mM NaCl). HBL and AMF were applied as individual and combined treatments on two cucumber cultivars and their effects were observed on the morphological growth and physiology under control and saline conditions. Findings revealed that the treated plants showed better performance under saline conditions through improved photosynthesis, leaf relative water content, and decreased electrolyte leakage in tolerant cultivar (CCMC) and to a lesser extent in sensitive (Jinyou 1#) cultivar. Comparable differences were noticed in the antioxidant enzymes activity such as superoxide dismutase, catalase, and peroxidase after every 10 days in both cultivars. Treating the plants with HBL and AMF also improved the mineral uptake regulation and lowered sodium concentration in roots compared to that in the non-treated plants. Current findings suggest that the protective role of HBL and AMF involves the regulation of antioxidants and lowers the risk of ion toxicity in the cucumber and hence enhance tolerance to salinity. These results are promising, but further studies are needed to verify the crop tolerance to stress and help in sustainable agricultural production, particularly vegetables that are prone to salinity.

8.
Ecol Evol ; 8(11): 5724-5740, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938088

RESUMO

Salinity is one of the major obstacles in the agriculture industry causing huge losses in productivity. Several strategies such as plant growth regulators with arbuscular mycorrhizal fungi (AMF) have been used to decrease the negative effects of salt stress. In our experiment, 28-homobrassinolide (HBL) with spraying intervals was combined with AMF (Glomus versiforme) in cucumber cultivars Jinyou 1# (salt sensitive) and (Changchun mici, in short, CCMC, salt tolerant) under NaCl (100 mmol/L). Studies have documented that the foliar application of HBL and AMF colonization can enhance tolerance to plants under stress conditions. However, the mechanism of the HBL spraying intervals after 15 and 30 days in combination with AMF in cucumber under salt stress is still unknown. Our results revealed that the HBL spraying interval after 15 days in combination with AMF resulted in improved growth, photosynthesis, and decreased sodium toxicity under NaCl. Moreover, the antioxidant enzymes SOD (superoxide dismutase; EC 1.15.1.1) and POD activity (peroxidase; EC 1.11.1.7) showed a gradual increase after every 10 days, while the CAT (catalase; EC 1.11.1.6) increased after 30 days of salt treatments in both cultivars. This research suggests that the enhanced tolerance to salinity was mainly related to elevated levels of antioxidant enzymes and lower uptake of Na+, which lowers the risk of ion toxicity and decreases cell membrane damage.

9.
Molecules ; 23(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642651

RESUMO

Chitosan is a naturally occurring compound and is commercially produced from seafood shells. It has been utilized in the induction of the defense system in both pre and post-harvest fruits and vegetables against fungi, bacteria, viruses, and other abiotic stresses. In addition to that, chitosan effectively improves the physiological properties of plants and also enhances the shelf life of post-harvest produces. Moreover, chitosan treatment regulates several genes in plants, particularly the activation of plant defense signaling pathways. That includes the elicitation of phytoalexins and pathogenesis-related (PR) protein. Besides that, chitosan has been employed in soil as a plant nutrient and has shown great efficacy in combination with other industrial fertilizers without affecting the soil's beneficial microbes. Furthermore, it is helpful in reducing the fertilizer losses due to its coating ability, which is important in keeping the environmental pollution under check. Based on exhibiting such excellent properties, there is a striking interest in using chitosan biopolymers in agriculture systems. Therefore, our current review has been centered upon the multiple roles of chitosan in horticultural crops that could be useful in future crop improvement programs.


Assuntos
Quitosana/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Armazenamento de Alimentos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
10.
Front Plant Sci ; 7: 1235, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610111

RESUMO

Garlic has the charisma of a potent remedy and holds its repute of a therapeutic panacea since the dawn of civilization. An integrated approach was adopted to evaluate the genetic diversity among Chinese garlic cultivars for their antifungal potency as well as allicin content distribution and, furthermore; a bioassay was performed to study the bio-stimulation mechanism of aqueous garlic extracts (AGE) in the growth and physiology of cucumber (Cucumis sativus). Initially, 28 garlic cultivars were evaluated against four kinds of phytopathogenic fungi; Fusarium oxysporum, Botrytis cinerea, Verticillium dahliae and Phytophthora capsici, respectively. A capricious antifungal potential among the selected garlic cultivars was observed. HPLC fingerprinting and quantification confirmed diversity in allicin abundance among the selected cultivars. Cultivar G025, G064, and G074 had the highest allicin content of 3.98, 3.7, and 3.66 mg g(-1), respectively, whereas G110 was found to have lowest allicin content of 0.66 mg g(-1). Cluster analysis revealed three groups on the basis of antifungal activity and allicin content among the garlic cultivars. Cultivar G025, G2011-4, and G110 were further evaluated to authenticate the findings through different solvents and shelf life duration and G025 had the strongest antifungal activity in all conditions. minimum inhibitory concentration and minimum fungicidal concentration of Allicin aqueous standard (AAS) and AGE showed significant role of allicin as primary antifungal substance of AGE. Leaf disk bioassay against P. capsici and V. dahliae to comparatively study direct action of AGE and AAS during infection process employing eggplant and pepper leaves showed a significant reduction in infection percentage. To study the bioactivity of AGE, a bioassay was performed using cucumber seedlings and results revealed that AGE is biologically active inside cucumber seedlings and alters the defense mechanism of the plant probably activating reactive oxygen species at mild concentrations. However, at higher concentrations, it might cause lipid peroxidation and membrane damage which temper the growth of cucumber seedlings. At the outcome of the study, an argument is advanced that current research findings provide bases for cultivar selection in antifungal effectivity as well as genetic variability of the cultivars. Allicin containing AGE can be used in specialized horticultural situations such as plastic tunnel and organic farming as a bio-stimulant to enhance cucumber growth and attenuate fungal degradation of agricultural produce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...