Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754490

RESUMO

Soil salinity poses a substantial threat to agricultural productivity, resulting in far-reaching consequences. Green-synthesized lignin nanoparticles (LNPs) have emerged as significant biopolymers which effectively promote sustainable crop production and enhance abiotic stress tolerance. However, the defensive role and underlying mechanisms of LNPs against salt stress in Zea mays remain unexplored. The present study aims to elucidate two aspects: firstly, the synthesis of lignin nanoparticles from alkali lignin, which were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Infrared Spectroscopy (FT-IR) and Energy Dispersive X-Ray Spectroscopy (EDX). The results confirmed the purity and morphology of LNPs. Secondly, the utilization of LNPs (200 mg/L) in nano priming to alleviate the adverse effects of NaCl (150 mM) on Zea mays seedlings. LNPs significantly reduced the accumulation of Na+ (17/21%) and MDA levels (21/28%) in shoots/roots while increased lignin absorption (30/31%), resulting in improved photosynthetic performance and plant growth. Moreover, LNPs substantially improved plant biomass, antioxidant enzymatic activities and upregulated the expression of salt-tolerant genes (ZmNHX3 (1.52 & 2.81 FC), CBL (2.83 & 3.28 FC), ZmHKT1 (2.09 & 4.87 FC) and MAPK1 (3.50 & 2.39 FC) in both shoot and root tissues. Additionally, SEM and TEM observations of plant tissues confirmed the pivotal role of LNPs in mitigating NaCl-induced stress by reducing damages to guard cells, stomata and ultra-cellular structures. Overall, our findings highlight the efficacy of LNPs as a practical and cost-effective approach to alleviate NaCl-induced stress in Zea mays plants. These results offer a sustainable agri-environmental strategy for mitigating salt toxicity and enhancing crop production in saline environments.


Assuntos
Antioxidantes , Lignina , Nanopartículas , Estresse Salino , Zea mays , Zea mays/efeitos dos fármacos , Lignina/química , Estresse Salino/efeitos dos fármacos , Antioxidantes/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Química Verde , Tolerância ao Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Salinidade
2.
Chemosphere ; 354: 141672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479680

RESUMO

Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.


Assuntos
Carvão Vegetal , Metais Pesados , Nanopartículas , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
3.
Front Plant Sci ; 13: 848893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371167

RESUMO

The shading of maize is an important factor, which leads to lodging and yield loss of soybean in the maize-soybean strip intercropping system, especially in areas with low solar radiation. This study was designed to explore how shade-tolerant soybean reduces yield loss by regulating its canopy structure and stem characteristics in the maize-soybean strip intercropping system. The soybean cultivars Tianlong No.1 (TL-1, representative of shade-tolerant plants) and Chuandou-16 (CD-16, representative of shade-intolerant plants) were grown in monocropping and intercropping systems from 2020 to 2021 in Chongzhou, Sichuan, China. Regardless of shade-intolerant or shade-tolerant soybean, the canopy and stem of soybean in strip intercropping were weaker than those of the corresponding monoculture. But compared with shade-intolerant soybean, the shade-tolerant soybean slightly changed its spatial structure of canopy and stem morphology and physiology in maize-soybean strip intercropping system, especially in the later growth stages. On the one hand, the canopy of shade-tolerant soybean showed relatively high transmission coefficient (TC) and relatively low leaf area index (LAI) and mean leaf angle (MLA). On the other hand, the stem of shade-tolerant soybean was obviously stronger than that of shade-intolerant soybean in terms of external morphology, internal structure, and physiological characteristics. Additionally, compared with shade-intolerant soybean, shade-tolerant soybean showed higher APnWP (the average net photosynthetic rate of the whole plant) and seed yield in the strip intercropping. The results showed that shade-tolerant soybean increased light energy capture and photosynthesis in the different canopy levels to promote the morphological and physiological development of the stem and ultimately reduce the yield loss of the strip intercropping system. However, the molecular mechanism of low radiation regulating soybean canopy structure (LAI, TC, and MLA) needs further in-depth research to provide theoretical guidance for cultivating plants with ideal canopy shape that can adapt to changing light environment in intercropping system.

4.
Plants (Basel) ; 9(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212960

RESUMO

Lodging is one of the most chronic restraints of the maize-soybean intercropping system, which causes a serious threat to agriculture development and sustainability. In the maize-soybean intercropping system, shade is a major causative agent that is triggered by the higher stem length of a maize plant. Many morphological and anatomical characteristics are involved in the lodging phenomenon, along with the chemical configuration of the stem. Due to maize shading, soybean stem evolves the shade avoidance response and resulting in the stem elongation that leads to severe lodging stress. However, the major agro-techniques that are required to explore the lodging stress in the maize-soybean intercropping system for sustainable agriculture have not been precisely elucidated yet. Therefore, the present review is tempted to compare the conceptual insights with preceding published researches and proposed the important techniques which could be applied to overcome the devastating effects of lodging. We further explored that, lodging stress management is dependent on multiple approaches such as agronomical, chemical and genetics which could be helpful to reduce the lodging threats in the maize-soybean intercropping system. Nonetheless, many queries needed to explicate the complex phenomenon of lodging. Henceforth, the agronomists, physiologists, molecular actors and breeders require further exploration to fix this challenging problem.

5.
Photochem Photobiol Sci ; 19(4): 462-472, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32154819

RESUMO

Soybean (Glycine max L.) has been extensively cultivated in maize-soybean relay intercropping systems in southwest China. However, during the early co-growth period, soybean seedlings suffer from severe shading by maize resulting in lodging and significant yield reduction. The purpose of the present research was to investigate the reasons behind severe lodging and yield loss. Therefore, four different soybean genotypes (B3, B15, B23, and B24) having different agronomic characteristics were cultivated in intercropping and monocropping planting patterns. The results showed that under different planting patterns, the stem resistance varied among genotypes (P < 0.01). The lodging resistance index of B3, B15, B23, and B24 genotypes was 70.9%, 60.5%, 65.2%, and 57.4%, respectively, under intercropping, among which the B24 genotype was less affected by the shade environment as there was little decrease in the lodging resistance index of this genotype under intercropping. The lignin content of B23 and B24 was significantly higher than that of B3 and B15 under both planting patterns. Under intercropping, the hemicellulose content of B23 and B24 stems was significantly higher than that of B3 and B15. Compared to the monocropping, the content of mannose in the structural carbohydrate of soybean stems was decreased in all genotypes except B23, but the difference was not significant. The content of xylose in the structural carbohydrate of soybean stems was significantly higher than that in B3 and B15. Mannose content showed no significant difference among genotypes. The arabinose content of B24 was significantly higher than that of B3, B15, and B23. The effective pod number, seed number per plant, seed weight per plant and yield of soybean plants were significantly decreased under intercropping. Conclusively, manipulation of structural and nonstructural carbohydrate rich soybean genotypes in intercropping systems could alleviate the yield loss due to lodging.


Assuntos
Celulose/metabolismo , Glycine max/metabolismo , Lignina/metabolismo , Monossacarídeos/metabolismo , Polissacarídeos/metabolismo , Sacarose/metabolismo , Celulose/genética , Genótipo , Lignina/genética , Monossacarídeos/genética , Caules de Planta/genética , Caules de Planta/fisiologia , Polissacarídeos/genética , Glycine max/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...