Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050316

RESUMO

Crosslinked polyethylene (XLPE) nanocomposite has superior insulation performance due to its excellent dielectric, mechanical, and thermal properties. The incorporation of nano-sized fillers drastically improved these properties in XLPE matrix due to the reinforcing effect of interfacial region between the XLPE-nanofillers. Good interfacial strength can be further improved by introducing a hybrid system nanofiller as a result of synergistic interaction between the nanofiller relative to a single filler system. Another factor affecting interfacial strength is the amount of hybrid nanofiller. Therefore, the incorporation amount of hybridising layered double hydroxide (LDH) with aluminium oxide (Al2O3) nanofiller into the XLPE matrix was investigated. Herein, the influence of hybrid nanofiller content and the 1:1 ratio of LDH to Al2O3 on the dielectric, mechanical, and thermal properties of the nanocomposite was studied. The structure and morphology of the XLPE/LDH-Al2O3 nanocomposites revealed that the hybridisation of nanofiller improved the dispersion state. The dielectric, mechanical, and thermal properties, including partial discharge resistance, AC breakdown strength, and tensile properties (tensile strength, Young's modulus, and elongation at break) were enhanced since it was influenced by the synergetic effect of the LDH-Al2O3 nanofiller. These properties were increased at optimal value of 0.8 wt.% before decreasing with increasing hybrid nanofiller. It was found that the value of PD magnitude improvement went down to 47.8% and AC breakdown strength increased by 15.6% as compared to pure XLPE. The mechanical properties were enhanced by 14.4%, 31.7%, and 23% for tensile strength, Young's modulus, and elongation at break, respectively. Of note, the hybridisation of nanofillers opens a new perspective in developing insulating material based on XLPE nanocomposite.

2.
Materials (Basel) ; 14(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203364

RESUMO

Mineral oil has been chosen as an insulating liquid in power transformers due to its superior characteristics, such as being an effective insulation medium and a great cooling agent. Meanwhile, the performance of mineral oil as an insulation liquid can be further enhanced by dispersing nanoparticles into the mineral oil, and this composition is called nanofluids. However, the incorporation of nanoparticles into the mineral oil conventionally causes the nanoparticles to agglomerate and settle as sediment in the base fluid, thereby limiting the improvement of the insulation properties. In addition, limited studies have been reported for the transformer oil as a base fluid using Aluminum Oxide (Al2O3) as nanoparticles. Hence, this paper reported an experimental study to investigate the significant role of cold plasma treatment in modifying and treating the surface of nano-alumina to obtain a better interaction between the nano-alumina and the base fluid, consequently improving the insulation characteristics such as breakdown voltage, partial discharge characteristics, thermal conductivity, and viscosity of the nanofluids. The plasma treatment process was conducted on the surface of nano-alumina under atmospheric pressure plasma by using the dielectric barrier discharge concept. The breakdown strength and partial discharge characteristics of the nanofluids were measured according to IEC 60156 and IEC 60270 standards, respectively. In contrast, the viscosity and thermal conductivity of the nanofluids were determined using Brookfield DV-II + Pro Automated viscometer and Decagon KD2-Pro conductivity meter, respectively. The results indicate that the 0.1 wt% of plasma-treated alumina nanofluids has shown the most comprehensive improvements in electrical properties, dispersion stability, and thermal properties. Therefore, the plasma treatment has improved the nanoparticles dispersion and stability in nanofluids by providing stronger interactions between the mineral oil and the nanoparticles.

3.
Sensors (Basel) ; 14(3): 5502-15, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24658617

RESUMO

Carbon Nanotubes (CNTs) are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET)-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I-V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.


Assuntos
Gases/análise , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanotubos de Carbono/química , Adsorção , Amônia/análise , Temperatura , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...