Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 169680, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181960

RESUMO

Increased climate variability and extremes are unequivocal with unprecedented impacts on water resources and agriculture production systems. However, little is known about the impacts of climate extremes at the intra-seasonal level which remained largely unexplored. We investigated the coincidence of climate extremes with sensitive crop growth phases of wheat and rice in the Indus, Ganges and Brahmaputra (IGB) river basins of South Asia. We also quantified the related impacts on irrigation water demand (IWD), gross primary production (GPP) and crop yields (CY) simulated by a hydrological-vegetation model (LPJmL) during 1981-2100 using RCP4.5-SSP1 and RCP8.5-SSP3 framework. The climate extremes revealed a higher frequency and intensity during crop growth phases with significant increasing trends in future. Diverse changes in IWD, GPP and CY are projected in future under the influence of crop phase-specific extremes. The crop phase-specific changes in the IWD of wheat and rice will intensify in the future. More than 50 % of the change in future wheat irrigation is caused by warm and dry extremes during the ripening phase. Whereas, increase in IWD for rice is mainly associated with warm extremes only. The crop phase-specific GPP shows a decreasing trend in future for both wheat and rice in the Western part of IGB with the largest decrease during the reproductive phase of wheat (up to 36 %) and vegetative phase of rice (>20 %). This decrease is clearly reflected in seasonal yields i.e., both wheat (20 %) and rice (12 %) showed a decrease in future linked with warm and dry extremes. However, in the Eastern part of IGB, the GPP will mostly increase in future during the three crop phases of wheat and rice. These results can be used to help develop efficient adaptation strategies considering seasonal changes and sensitive crop phases for sustained food and water security in South Asia.


Assuntos
Imunoglobulinas , Oryza , Rios , Produtos Agrícolas , Mudança Climática , Clima , Triticum
2.
Biomedicines ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37509530

RESUMO

Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.

3.
Braz. j. biol ; 83: e253009, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339373

RESUMO

Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.


Resumo Hoje, o foco global da pesquisa é explorar a solução da crise energética e da poluição ambiental. Como em outros países agrícolas, grandes quantidades de cascas de melancia (WMP) são descartadas como resíduos no meio ambiente no Paquistão, mas a gestão adequada desses resíduos é a mais recente solução para salvar o meio ambiente da poluição. O trabalho enfatiza o papel das leveduras etanologênicas para utilizar açúcares significativos presentes no WMP para fermentação de bioetanol de baixo custo. A hidrólise de ácido clorídrico diluído de WMP foi realizada em condições otimizadas empregando RSM (metodologia de superfície de resposta) e seguindo o projeto de composto central (CCD). Este projeto experimental é baseado na otimização da etanologenesis envolvendo alguns parâmetros independentes importantes, como hidrolisado de WMP e razão de meio sintético (X1), temperatura de incubação (X2) e temperatura de incubação (X3) para rendimento máximo de etanol explorando o padrão (Saccharomyces cerevisiae K7) também como leveduras experimentais (Metchnikowia cibodasensis Y34). Os resultados revelaram que os rendimentos máximos de etanol obtidos a partir de S. cerevisiae K7 foi de 0,36 ± 0,02 g / g de açúcares redutores, enquanto M. cibodasensis Y34 rendeu 0,40 ± 0,01 g de etanol / g de açúcares redutores. O isolado de levedura M. cibodasensis Y34 apareceu como um etanologeno promissor e incorpora um potencial prospectivo para a valorização fermentativa de WMP em bioetanol.


Assuntos
Cucurbitaceae , Etanol , Saccharomyces cerevisiae , Água , Biotransformação , Estudos Prospectivos , Fermentação
4.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469132

RESUMO

Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.


Resumo Hoje, o foco global da pesquisa é explorar a solução da crise energética e da poluição ambiental. Como em outros países agrícolas, grandes quantidades de cascas de melancia (WMP) são descartadas como resíduos no meio ambiente no Paquistão, mas a gestão adequada desses resíduos é a mais recente solução para salvar o meio ambiente da poluição. O trabalho enfatiza o papel das leveduras etanologênicas para utilizar açúcares significativos presentes no WMP para fermentação de bioetanol de baixo custo. A hidrólise de ácido clorídrico diluído de WMP foi realizada em condições otimizadas empregando RSM (metodologia de superfície de resposta) e seguindo o projeto de composto central (CCD). Este projeto experimental é baseado na otimização da etanologenesis envolvendo alguns parâmetros independentes importantes, como hidrolisado de WMP e razão de meio sintético (X1), temperatura de incubação (X2) e temperatura de incubação (X3) para rendimento máximo de etanol explorando o padrão (Saccharomyces cerevisiae K7) também como leveduras experimentais (Metchnikowia cibodasensis Y34). Os resultados revelaram que os rendimentos máximos de etanol obtidos a partir de S. cerevisiae K7 foi de 0,36 ± 0,02 g / g de açúcares redutores, enquanto M. cibodasensis Y34 rendeu 0,40 ± 0,01 g de etanol / g de açúcares redutores. O isolado de levedura M. cibodasensis Y34 apareceu como um etanologeno promissor e incorpora um potencial prospectivo para a valorização fermentativa de WMP em bioetanol.

5.
PLoS One ; 17(4): e0258355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35389989

RESUMO

Naturally occurring curcumin can be used for the treatment of corneal bacterial infections with its limitation of poor solubility. Aim of the present study was to enhance solubility and permeation of curcumin for the treatment of corneal bacterial infections. For increasing solubility, curcumin and polyethylene glycol (PEG 6000) complex (1:3) was prepared by fusion melting method. Phase solubility studies were used for the calculation of Gibbs free energy of curcumin. Central composite rotatable design (CCRD) was applied for optimization of Curcumin (CUR), PEGylated Curcumin (PEG-CUR), penetration enhancer cremophore (CR). Optimized ointments were further evaluated by mucous permeation, membrane permeability and cell toxicity studies by Transwell cell, ussing chamber and Caco-2 cells respectively. Antibacterial test was also performed by agar well diffusion method. Solubility of PEG-CUR was increased up to 93±3.2% as compared to pure curcumin and content uniformity was in the range of 95-110%. Curcumin permeation from PEG-CUR ointment was increased up to 12 folds. No toxicity of Caco-2 cells for PEG-CUR even after 24h was observed. Activity index of pure CUR, PEG-CUR ointment with or without CR against S. aureus and P. aeruginosa was 97±2.3, 96±1.6, 95±2.5% respectively. Ointment with solubility enhanced PEG-CUR and cremophore can be used as a promising tool for the treatment of corneal bacterial infections.


Assuntos
Infecções Bacterianas , Curcumina , Nanopartículas , Células CACO-2 , Curcumina/farmacologia , Humanos , Pomadas , Polietilenoglicóis , Solubilidade , Staphylococcus aureus
6.
Braz J Biol ; 83: e253009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495170

RESUMO

Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.


Assuntos
Cucurbitaceae , Etanol , Biotransformação , Fermentação , Estudos Prospectivos , Saccharomyces cerevisiae , Água
7.
Saudi J Biol Sci ; 28(7): 3710-3719, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220222

RESUMO

Pomegranate peels (PPW) as municipal waste is inexpensive biomass that could be a renewable source of sugars particularly rich in hemicellulosic contents. The subsequent conversion of available sugars in PPW can provide prospective strategy for cost-effective bioenergy production. In this study, an experimental setup based on CCD was implemented with the aim of bioconversion of biomass into bioethanol. The factors considered were Hydrochloric acid concentration (X1), the hydrolysis temperature (X2) and time (X3) for optimization with dilute Hydrochloric acid (HCl) saccharification. The present study investigates the optimised level of bioethanol synthesis from acid pre-treated PPW explained by RSM. Subsequently, three yeasts viz. Saccharomyces cerevisiae K7, Metschnikowia sp. Y31 and M. cibodasensis Y34 were utilized for fermentation of acid hydrolysed and detoxified feed stocks. Optimum values of reducing sugars 48.02 ± 0.02 (gL-1) and total carbohydrates 205.88 ± 0.13 (gL-1) were found when PPW was hydrolyzed with 1% HCl concentration at 100˚C of temperature for 30 min. Later on, fermentation of PPWH after detoxification with 2.5% activated charcoal. The significant ethanol (g ethanol/g of reducing sugars) yields after fermentation with Metschnikowia sp. Y31 and M. cibodasensis Y34 found to be 0.40 ± 0.03 on day 5 and 0.41 ± 0.02 on last day of experiment correspondingly. Saccharomyces cerevisiae K7 also produce maximum ethanol 0.40 ± 0.00 on last day of incubation utilizing the PPWH. The bioconversion of commonly available PPW into bioethanol as emphasize in this study could be a hopeful expectation and also cost-effective to meet today energy crisis.

8.
J Basic Microbiol ; 58(11): 918-927, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144131

RESUMO

Phenotypic characteristics while complimenting 16S rRNA gene sequencing in identifying bacteria become decisive in solving conflicts of equal % similarity of a given DNA sequence to more than one classified microorganisms. "Phenotypic light" may also indicate right direction when a new species' 16S rDNA sequence is under consideration. In fact 16S rRNA gene sequences give indication that either a novel species has been isolated or the test organism is identified. In each case additional tests are required for resolving different issues. Predictions of microbial phenotypes from metagenomic data depend heavily on our knowledge of expressed genes. Thus renaissance of microbial phenotypic characterization is likely to emerge at par with genotypic signatures. Interplay of these and other complimentary levels of analyses are likely to lead DNA barcoding for microorganisms as it has provided efficient methods for species-level identifications of animals and plants. In this review, an attempt has been made to realize the reader(s) importance of interplay of genotypic and phenotypic characteristics of bacteria for development of comprehensive and more stable classification schemes. It is expected that future valid classification schemes will be based on the phenetic relationships of microorganisms.


Assuntos
Bactérias/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana/normas , Análise de Sequência de DNA/normas , Bactérias/química , Bactérias/isolamento & purificação , Código de Barras de DNA Taxonômico/normas , DNA Bacteriano/genética , Genoma Bacteriano/genética , Genótipo , Metagenômica/normas , Fenótipo , RNA Ribossômico 16S/genética
9.
Biotechnol Biofuels ; 10: 105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450886

RESUMO

BACKGROUND: Biofuels obtained from first-generation (1G) sugars-starch streams have been proven unsustainable as their constant consumption is not only significantly costly for commercial scale production systems, but it could potentially lead to problems associated with extortionate food items for human usage. In this regard, biofuels' production in alkali-thermophilic environs from second-generation (2G) bio-waste would not only be markedly feasible, but these extreme conditions might be able to sustain aseptic fermentations without spending much for sterilization. RESULTS: Present investigation deals with the valuation of ethanologenic potential of locally isolated moderate alkali-thermophilic fermentative bacterium, Bacillus licheniformis KU886221 employing sugarcane cane bagasse (SCB) as substrate. A standard 2-factor central composite response surface design was used to estimate the optimized cellulolytic and hemicellulolytic enzymatic hydrolysis of SCB into maximum fermentable sugars. After elucidation of optimized levels of fermentation factors affecting ethanol fermentation using Taguchi OA L27 (3^13) experimental design, free cell batch culture was carried out in bench-scale stirred-tank bioreactor for ethanol fermentation. Succeeding fermentation modifications included subsequent substrate addition, immobilized cells fibrous-bed bioreactor (FBB) incorporation to the basic setup, and performance of in situ gas stripping for attaining improved ethanol yield. Highest ethanol yield of 1.1406 mol ethanol/mol of equivalent sugars consumed was obtained when gas stripping was performed during fed-batch fermentation involving FBB under aseptic conditions. Despite the fact that under non-aseptic conditions, 30.5% lesser ethanol was formed, still, reduced yield might be considered influential as it saved the cost of sterilization for ethanol production. CONCLUSION: Effectual utilization of low-priced abundantly available lignocellulosic waste sugarcane bagasse under non-aseptic moderate alkali-thermophilic fermentation conditions as directed in this study has appeared very promising for large-scale cost-effective bioethanol generation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...