Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800194

RESUMO

An electrically tunable, textile-based metamaterial (MTM) is presented in this work. The proposed MTM unit cell consists of a decagonal-shaped split-ring resonator and a slotted ground plane integrated with RF varactor diodes. The characteristics of the proposed MTM were first studied independently using a single unit cell, prior to different array combinations consisting of 1 × 2, 2 × 1, and 2 × 2 unit cells. Experimental validation was conducted for the fabricated 2 × 2 unit cell array format. The proposed tunable MTM array exhibits tunable left-handed characteristics for both simulation and measurement from 2.71 to 5.51 GHz and provides a tunable transmission coefficient of the MTM. Besides the left-handed properties within the frequency of interest (from 1 to 15 GHz), the proposed MTM also exhibits negative permittivity and permeability from 8.54 to 10.82 GHz and from 10.6 to 13.78 GHz, respectively. The proposed tunable MTM could operate in a dynamic mode using a feedback system for different microwave wearable applications.

2.
Sensors (Basel) ; 21(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806215

RESUMO

Constantly changing electricity demand has made variability and uncertainty inherent characteristics of both electric generation and cellular communication systems. This paper develops an online learning algorithm as a prescheduling mechanism to manage the variability and uncertainty to maintain cost-aware and reliable operation in cloud radio access networks (Cloud-RANs). The proposed algorithm employs a combinatorial multi-armed bandit model and minimizes the long-term energy cost at remote radio heads. The algorithm preschedules a set of cost-efficient energy packages to be purchased from an ancillary energy market for the future time slots by learning both from cooperative energy trading at previous time slots and by exploring new energy scheduling strategies at the current time slot. The simulation results confirm a significant performance gain of the proposed scheme in controlling the available power budgets and minimizing the overall energy cost compared with recently proposed approaches for real-time energy resources and energy trading in Cloud-RANs.

3.
Sensors (Basel) ; 18(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373314

RESUMO

Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors gather the body's vital signs and send them directly to master nodes (MNs). The sensors are distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the quality of the wireless link between sensors and the destination. Hence, in some cases, single hop transmission ('direct transmission') is not sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal shadowing channel model. In this paper, a complete study of a system model is inspected in the terms of the channel path loss, the successful transmission probability, and the outage probability. Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and average power consumption. A new back-off time is proposed within CD-ICC, which ensures the best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce the end-to-end delay, the duty cycle, and the average power transmission. The simulation and numerical results presented here show that, under general conditions, CD-ICC can enhance network performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking. To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC.


Assuntos
Comunicação , Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Simulação por Computador , Análise Numérica Assistida por Computador , Probabilidade
4.
J Phys Ther Sci ; 27(1): 39-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25642033

RESUMO

[Purpose] This study investigated the changes in the slope of EMG-time curves (relationship) at the maximal and different levels of dynamic (eccentric and concentric) and static (isometric) contractions. [Subjects and Methods] The subject was a 17 year-old male adolescent. The surface EMG signal of the dominant arm's biceps brachii (BB) was recorded through electrodes placed on the muscle belly. [Results] The results obtained during the contractions show that the regression slope was very close to 1.00 during concentric contraction, whereas those of eccentric and isometric contractions were lower. Significant differences were found for the EMG amplitude and time lags among the contractions. [Conclusion] The results show that the EMG signal of the BB varies among the three modes of contraction and the relationship of the EMG amplitude with a time lag gives the best fit during concentric contraction.

5.
Muscle Nerve ; 51(6): 899-906, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25204740

RESUMO

INTRODUCTION: In this study, we analyzed the crosstalk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles of the forearm during wrist flexion (WF) and extension (WE) and radial (RD) and ulnar (UD) deviations. METHODS: Twenty right-handed men (mean ± SD age=26.7 ± 3.83 years) performed the wrist postures. During each wrist posture, MMG signals were detected using 3 accelerometers. Peak cross-correlations were used to quantify crosstalk. RESULTS: The level of crosstalk ranged from 1.69 to 64.05%. The wrist postures except the RD did not influence the crosstalk significantly between muscle pairs. However, muscles of the forearm compartments influenced the level of crosstalk for each wrist posture significantly. CONCLUSIONS: The results may be used to improve our understanding of the mechanics of the forearm muscles during wrist postures.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Postura/fisiologia , Amplitude de Movimento Articular/fisiologia , Punho/inervação , Adulto , Análise de Variância , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
6.
PLoS One ; 9(8): e104280, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090008

RESUMO

PROBLEM STATEMENT: In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity. PURPOSE: The aim of the present study was two-fold: i) to quantify the level of crosstalk in the mechanomyographic (MMG) signals from the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the extensor digitorum (ED), extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU) muscles during isometric wrist flexion (WF) and extension (WE), radial (RD) and ulnar (UD) deviations; and ii) to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures. METHODS: Twenty, healthy right-handed men (mean ± SD: age = 26.7±3.83 y; height = 174.47±6.3 cm; mass = 72.79±14.36 kg) participated in this study. During each wrist posture, the MMG signals propagated through the axes of the muscles were detected using three separate tri-axial accelerometers. The x-axis, y-axis, and z-axis of the sensor were placed in the Lo, La, and Tr directions with respect to muscle fibers. The peak cross-correlations were used to quantify the proportion of crosstalk between the different muscle groups. RESULTS: The average level of crosstalk in the MMG signals generated by the muscle groups ranged from: 34.28-69.69% for the Lo axis, 27.32-52.55% for the La axis and 11.38-25.55% for the Tr axis for all participants and their wrist postures. The Tr axes between the muscle groups showed significantly smaller crosstalk values for all wrist postures [F (2, 38) = 14-63, p<0.05, η2 = 0.416-0.769]. SIGNIFICANCE: The results may be applied in the field of human movement research, especially for the examination of muscle mechanics during various types of the wrist postures.


Assuntos
Músculo Esquelético/fisiologia , Postura/fisiologia , Punho/fisiologia , Adulto , Fenômenos Biomecânicos , Antebraço , Humanos , Contração Isométrica , Masculino , Movimento/fisiologia , Miografia/métodos , Amplitude de Movimento Articular/fisiologia
7.
Technol Health Care ; 22(4): 617-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24990168

RESUMO

OBJECTIVES: Normally, surface electromyography electrodes are used to evaluate the activity of superficial muscles during various kinds of voluntary contractions of muscle fiber. The objective of the present study was to investigate the effect of repetitive isometric contractions on the three heads of the triceps brachii muscle during handgrip force exercise. METHODS: Myoelectric signals were recorded from the lateral, long and medial heads of the triceps brachii muscle in 13 healthy males during maximal isometric contractions for 10 s of concurrent handgrip force and elbow extension. The subjects were asked to perform their contraction task five times with 3 minutes interval between two successive contractions. RESULTS: Decreasing electromyographic activities were found for the lateral and long heads, and increasing for the medial head throughout the 5 different contractions. Electromyographic activities were found for the lateral head with mean=199.84, SD=7.65, CV=3.83%, the long head with mean=456.76, SD=18.10, CV=3.96%, and the medial head with mean=505.16, SD=8.47, CV=1.68%. Electromyographic activities among the three heads of triceps brachii were significantly different (F=3.82) at the alpha level of (p<0.05). CONCLUSIONS: These findings support that repetitive isometric contractions decrease the contractile activity in the lateral and long heads, and increases in the medial head of the triceps brachii muscle during handgrip force exercise with full elbow extension, and the electromyographic activity changes are observed to be more significant at the long head as compared to the lateral and medial heads.


Assuntos
Eletromiografia/métodos , Força da Mão/fisiologia , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Adulto , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
8.
PLoS One ; 9(5): e96628, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802858

RESUMO

PURPOSE: This study aimed: i) to examine the relationship between the magnitude of cross-talk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles with the sub-maximal to maximal isometric grip force, and with the anthropometric parameters of the forearm, and ii) to quantify the distribution of the cross-talk in the MMG signal to determine if it appears due to the signal component of intramuscular pressure waves produced by the muscle fibers geometrical changes or due to the limb tremor. METHODS: Twenty, right-handed healthy men (mean ± SD: age  = 26.7±3.83 y; height  = 174.47±6.3 cm; mass  = 72.79±14.36 kg) performed isometric muscle actions in 20% increment from 20% to 100% of the maximum voluntary isometric contraction (MVIC). During each muscle action, MMG signals generated by each muscle were detected using three separate accelerometers. The peak cross-correlations were used to quantify the cross-talk between two muscles. RESULTS: The magnitude of cross-talk in the MMG signals among the muscle groups ranged from, R2(x, y) = 2.45-62.28%. Linear regression analysis showed that the magnitude of cross-talk increased linearly (r2 = 0.857-0.90) with the levels of grip force for all the muscle groups. The amount of cross-talk showed weak positive and negative correlations (r2 = 0.016-0.216) with the circumference and length of the forearm respectively, between the muscles at 100% MVIC. The cross-talk values significantly differed among the MMG signals due to: limb tremor (MMGTF), slow firing motor unit fibers (MMGSF) and fast firing motor unit fibers (MMGFF) between the muscles at 100% MVIC (p<0.05, η2 = 0.47-0.80). SIGNIFICANCE: The results of this study may be used to improve our understanding of the mechanics of the forearm muscles during different levels of the grip force.


Assuntos
Antebraço/fisiologia , Força da Mão/fisiologia , Contração Isométrica/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Eletromiografia/métodos , Humanos , Masculino , Miografia/métodos , Análise de Regressão
9.
ScientificWorldJournal ; 2014: 815720, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672378

RESUMO

The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.


Assuntos
Tecnologia sem Fio , Modelos Teóricos
10.
PLoS One ; 8(3): e58902, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536834

RESUMO

BACKGROUND: Mechanomyography (MMG) has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF), prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs. METHODOLOGY/PRINCIPAL FINDINGS: Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms. CONCLUSIONS/SIGNIFICANCE: Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.


Assuntos
Músculo Esquelético/fisiologia , Exercício Físico , Humanos , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Miografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...