Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 99: 308-318, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28254573

RESUMO

A novel facility from the green technologies to integrate biomass-based carbohydrates, lignin, oils and other materials extraction and transformation into a wider spectrum of marketable and value-added products with a zero waste approach is reviewed. With ever-increasing scientific knowledge, worldwide economic and environmental consciousness, demands of legislative authorities and the manufacture, use, and removal of petrochemical-based by-products, from the last decade, there has been increasing research interests in the value or revalue of lignocellulose-based materials. The potential characteristics like natural abundance, renewability, recyclability, and ease of accessibility all around the year, around the globe, all makes residual biomass as an eco-attractive and petro-alternative candidate. In this context, many significant research efforts have been taken into account to change/replace petroleum-based economy into a bio-based economy, with an aim to develop a comprehensively sustainable, socially acceptable, and eco-friendly society. The present review work mainly focuses on various aspects of bio-refinery as a sustainable technology to process lignocellulose 'materials' into value-added products. Innovations in the bio-refinery world are providing, a portfolio of sustainable and eco-efficient products to compete in the market presently dominated by the petroleum-based products, and therefore, it is currently a subject of intensive research.


Assuntos
Biotecnologia/métodos , Conservação dos Recursos Naturais/métodos , Lignina/química , Resíduos , Animais , Biomassa
2.
Carbohydr Polym ; 161: 244-252, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189235

RESUMO

In the present study, in-house extracted ligninolytic consortium was used as a green catalyst to modify the pristine wheat straw through de-lignification. The ligninolytic consortium showed an enhanced level of de-lignification with a maximal cellulose exposure from 24% to 76.54% cellulose. The de-lignified wheat straw was further strengthened using bacterial cellulose integration. Subsequently, a well-known compression molding technique was used to develop bio-composites from a de-lignified and bacterially modified wheat straw in the presence of polyvinyl alcohol (PVA) and glycerol as a plasticizer. The newly developed bio-composites were characterized using a variety of analytical and imaging techniques including Fourier Transform Infra-Red Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Evidently, the characterization profile revealed a considerable improvement in the morphology, mechanical and water uptake features of the newly developed bio-composites. In summary, the improved characteristics of bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites suggest a high potential of enzymatic treatment for biotechnological exploitability.


Assuntos
Bactérias/química , Celulose/química , Álcool de Polivinil/química , Triticum/química , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...