Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(45): e2103812, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541731

RESUMO

The oxygen evolution reaction (OER) limits the energy efficiency of electrocatalytic systems due to the high overpotential symptomatic of poor reaction kinetics; this problem worsens over time if the performance of the OER electrocatalyst diminishes during operation. Here, a novel synthesis of nanocrystalline Ni-Co-Se using ball milling at cryogenic temperature is reported. It is discovered that, by anodizing the Ni-Co-Se structure during OER, Se ions leach out of the original structure, allowing water molecules to hydrate Ni and Co defective sites, and the nanoparticles to evolve into an active Ni-Co oxyhydroxide. This transformation is observed using operando X-ray absorption spectroscopy, with the findings confirmed using density functional theory calculations. The resulting electrocatalyst exhibits an overpotential of 279 mV at 0.5 A cm-2 and 329 mV at 1 A cm-2 and sustained performance for 500 h. This is achieved using low mass loadings (0.36 mg cm-2 ) of cobalt. Incorporating the electrocatalyst in an anion exchange membrane water electrolyzer yields a current density of 1 A cm-2 at 1.75 V for 95 h without decay in performance. When the electrocatalyst is integrated into a CO2 -to-ethylene electrolyzer, a record-setting full cell voltage of 3 V at current density 1 A cm-2 is achieved.

2.
Nanoscale ; 13(1): 242-252, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33331367

RESUMO

Noble metal clusters have unique photophysical properties, especially as a new class of materials for multiphoton biomedical imaging. The previously studied Au25SR18 exhibits "giant" two-photon absorbance cross sections. Herein, we investigate the origins of the large two photon absorption for Au25SR18, as well as 10 other Au and Ag clusters using femtosecond pump/probe transient absorption spectroscopy (fsTAS). Excited state absorbance (ESA) ubiquitous to thiolated Au and Ag clusters is used herein as an optical signature of two-photon absorbances of the 11 different Au and Ag clusters, which does not require high quantum yields of emission. The large selection of clusters, studied with a single laser system, allows us to draw conclusions on the role of the particular metal, cluster size/structure, and the effects of the ligands on the ability to absorb multiple NIR photons. The use of a laser with a 1028 nm excitation also allows us to investigate the dramatic effect of excitation wavelength and explain why laser wavelength has led to large variances in the non-linear responses reported for clusters to date. We discuss the double resonance mechanism, responsible for giant two photon absorbance cross-sections, helping match properties of metal clusters with experimental conditions for maximizing signal/response in multiphoton applications.

3.
Nanoscale ; 9(13): 4478-4485, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28304408

RESUMO

Influence of metal oxide (MO) supports on nanoparticle (NP) catalysts is still under investigation. Theoretical studies demonstrate that active defect sites on the surface of a MO support can affect the structure and activity of metal clusters. In the present work, we show that even defect-free surfaces of MOs can cause considerable restructuring and accumulation of interfacial charges on Pt NPs of size 1 nm (Pt55). Independent of the type of MO support, we find that supported Pt55 behaves like a conductor since the binding energy of a test adsorbate on top of it is similar to that on an intact Pt55. However, adsorption energy at binding sites close to the perimeter of the nanoparticle/support interface can vary by 1.8 eV depending on the distance between the adsorbate and surface cations (possibility of forming ionic bonds) as well as the amount and sign of charges (ionization energy) of interfacial Pt atoms.

4.
Phys Chem Chem Phys ; 18(7): 5291-8, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26818719

RESUMO

Structure and activity of nanoparticles of hexagonal close-packed (hcp) metals are studied using first-principles calculations. Results show that, in contact with a nitrogen environment, high-index {134[combining macron]2} facets are formed on hcp metal nanoparticles. Nitrogen molecules dissociate easily at kink sites on these high-index facets (activation barriers of <0.2 eV). Analysis of the site blocking effect and adsorption energies on {134[combining macron]2} facets explains the order of activity of hcp metals for ammonia synthesis: Re < Os < Ru. Our results indicate that the high activity of hcp metals for ammonia synthesis is due to the N-induced formation of {134[combining macron]2} facets with high activity for the dissociation of nitrogen molecules. However, quite different behavior for adsorption of dissociated N atoms leads to distinctive activity of hcp metals.

5.
Phys Chem Chem Phys ; 16(38): 20537-47, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25146303

RESUMO

Density functional theory (DFT) calculations with local spin density discrimination have been performed to examine the effect of atomic under-coordination on the catalytic and magnetic properties of cuboctahedral (CO) and marks decahedral (MD) structured Pt and Rh nanoclusters. Consistency between theoretical calculations and experimental observations confirmed the predictions based on the framework of bond-order-length-strength (BOLS) correlation and nonbonding electron polarization (NEP) notations. The BOLS-NEP notation suggests that the shorter-and-stronger bonds between under-coordinated atoms induce local densification and quantum entrapment of core electrons, which then polarize the otherwise conducting electrons and result in shifts of the binding energy. Such strong localization resolves the intriguing catalytic and magnetic attributes of Pt and Rh nanoclusters.

6.
Phys Chem Chem Phys ; 16(19): 8940-8, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24691894

RESUMO

Consistency between density functional theory (DFT) calculations and experimental observations confirmed our predictions on the behaviour of local bonds, and the electron binding energy of cuboctahedral and Marks decahedral structures of Ag and Cu nanoclusters. The shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of the core electrons, which polarize the otherwise conducting electrons (valence electrons). Such strong localization may result in extraordinary catalytic and plasmonic properties in Ag and Cu nanoclusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...