Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 16(6)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34416738

RESUMO

Mg and its alloys are biodegradable and mechanically strong materials, which can be used for an orthopedic implant and device applications, but corrosion rate of these alloys is high. In this research, the nanocomposite coatings of chitosan (CS)/graphene oxide (GO) were fabricated to improve the corrosion resistance of the Mg-2 wt% Zn scaffold. The contents of the GO nanosheets and the pulse electrodeposition process parameters, including peak current density (CD) and duty cycle (DC), will also be investigated. The Mg-2 wt% Zn as a substrate of the scaffold was prepared using a powder metallurgy process. The influence of the porosity was studied on the microstructure fabricated scaffolds. The coating microstructures and morphologies were investigated by Raman spectroscopy, x-ray diffraction, thermogravimetric analysis, and SEM. The atomic force microscopy was performed to study the thickness of the nanocomposite coatings. The zeta potential measurement was conducted for the dispersion of the GO nanosheets in the CS matrix. The obtained results showed that the optimum conditions to fabricate a uniform CS/GO coating on the scaffolds were 2 wt% GO, CD = 20 mA cm-2, and DC = 0.5. The pH, time and temperature for the fabrication of the coatings were conducted at 5, 20 min, and 37 °C, respectively. Additionally, the potentiodynamic polarization measurement in simulated body fluid indicated that the CS/GO coatings could provide effective protection of the scaffolds against corrosion. Additionally, the optimum sample obtained from the aspect of the corrosion behavior demonstrated adequate biocompatibility with proper adhesion of mouse fibroblast cells (L929) on the CS-2 wt% GO coating.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Grafite/química , Nanocompostos , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas , Magnésio/química , Camundongos , Nanocompostos/química , Nanocompostos/toxicidade
2.
ACS Appl Mater Interfaces ; 8(25): 15975-84, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27295080

RESUMO

A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...