Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Epilepsia Open ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970780

RESUMO

OBJECTIVE: This study evaluates the performance of the novel MRI sequence stimulus-induced rotary saturation (SIRS) to map responses to interictal epileptic activity in the human cortex. Spin-lock pulses have been applied to indirectly detect neuronal activity through magnetic field perturbations. Following initial reports about the feasibility of the method in humans and animals with epilepsy, we aimed to investigate the diagnostic yield of spin-lock MR pulses in comparison with scalp-EEG in first seizure patients. METHODS: We employed a novel method for measurements of neuronal activity through the detection of a resonant oscillating field, stimulus-induced rotary saturation contrast (SIRS) at spin-lock frequencies of 120 and 240 Hz acquired at a single 3T MRI system. Within a prospective observational study, we conducted SIRS experiments in 55 patients within 7 days after a suspected first unprovoked epileptic seizure and 61 healthy control subjects. In this study, we report on the analysis of data from a single 3T MRI system, encompassing 35 first seizure patients and 31 controls. RESULTS: The SIRS method was applicable in all patients and healthy controls at frequencies of 120 and 240 Hz. We did not observe any significant age- or sex-related differences. Specificity of SIRS at 120 Hz was 90.3% and 93.5% at 240 Hz. Sensitivity was 17.1% at 120 Hz and 40.0% at 240 Hz. SIGNIFICANCE: SIRS targets neuronal oscillating magnetic fields in patients with epilepsy. The coupling of presaturated spins to epilepsy-related magnetic field perturbations may serve as a-at this stage experimental-diagnostic test in first seizure patients to complement EEG findings as a standard screening test. PLAIN LANGUAGE SUMMARY: Routine diagnostic tests carry several limitations when applied after a suspected first seizure. SIRS is a noninvasive MRI method to enable time-sensitive diagnosis of image correlates of epileptic activity with increased sensitivity compared to routine EEG.

2.
Clin Neuroradiol ; 33(4): 1045-1053, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37358608

RESUMO

OBJECTIVE: To evaluate the influence of quantitative reports (QReports) on the radiological assessment of hippocampal sclerosis (HS) from MRI of patients with epilepsy in a setting mimicking clinical reality. METHODS: The study included 40 patients with epilepsy, among them 20 with structural abnormalities in the mesial temporal lobe (13 with HS). Six raters blinded to the diagnosis assessed the 3T MRI in two rounds, first using MRI only and later with both MRI and the QReport. Results were evaluated using inter-rater agreement (Fleiss' kappa [Formula: see text]) and comparison with a consensus of two radiological experts derived from clinical and imaging data, including 7T MRI. RESULTS: For the primary outcome, diagnosis of HS, the mean accuracy of the raters improved from 77.5% with MRI only to 86.3% with the additional QReport (effect size [Formula: see text]). Inter-rater agreement increased from [Formula: see text] to [Formula: see text]. Five of the six raters reached higher accuracies, and all reported higher confidence when using the QReports. CONCLUSION: In this pre-use clinical evaluation study, we demonstrated clinical feasibility and usefulness as well as the potential impact of a previously suggested imaging biomarker for radiological assessment of HS.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Esclerose Hipocampal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Esclerose/diagnóstico por imagem , Esclerose/patologia , Epilepsia/patologia , Imageamento por Ressonância Magnética/métodos , Biomarcadores
3.
Clin Neuroradiol ; 33(3): 747-754, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36862231

RESUMO

OBJECTIVE: To assess if a new dual-energy computed tomography (DECT) technique enables an improved visualization of ischemic brain tissue after mechanical thrombectomy in acute stroke patients. MATERIAL AND METHODS: The DECT head scans with a new sequential technique (TwinSpiral DECT) were performed in 41 patients with ischemic stroke after endovascular thrombectomy and were retrospectively included. Standard mixed and virtual non-contrast (VNC) images were reconstructed. Infarct visibility and image noise were assessed qualitatively by two readers using a 4-point Likert scale. Quantitative Hounsfield units (HU) were used to assess density differences of ischemic brain tissue versus healthy tissue on the non-affected contralateral hemisphere. RESULTS: Infarct visibility was significantly better in VNC compared to mixed images for both readers R1 (VNC: median 1 (range 1-3), mixed: median 2 (range 1-4), p < 0.05) and R2 (VNC: median 2 (range 1-3), mixed: 2 (range 1-4), p < 0.05). Qualitative image noise was significantly higher in VNC compared to mixed images for both readers R1 (VNC: median 3, mixed: 2) and R2 (VNC: median 2, mixed: 1, p < 0.05, each). Mean HU were significantly different between the infarcted tissue and the reference healthy brain tissue on the contralateral hemisphere in VNC (infarct 24 ± 3) and mixed images (infarct 33 ± 5, p < 0.05, each). The mean HU difference between ischemia and reference in VNC images (mean 8 ± 3) was significantly higher (p < 0.05) compared to the mean HU difference in mixed images (mean 5 ± 4). CONCLUSION: TwinSpiral DECT allows an improved qualitative and quantitative visualization of ischemic brain tissue in ischemic stroke patients after endovascular treatment.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Isquemia , Infarto , Trombectomia
4.
Cancers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980563

RESUMO

Glioblastoma is a highly heterogeneous primary malignant brain tumor with marked inter-/intratumoral diversity and a poor prognosis. It may contain a population of neural stem cells (NSC) and glioblastoma stem cells that have the capacity for migration, self-renewal and differentiation. While both may contribute to resistance to therapy, NSCs may also play a role in brain tissue repair. The subventricular zone (SVZ) is the main reservoir of NSCs. This study investigated the impact of bilateral SVZ radiation doses on patient outcomes. We included 147 patients. SVZs were delineated and the dose administered was extracted from dose-volume histograms. Tumors were classified based on their spatial relationship to the SVZ. The dose and outcome correlations were analyzed using the Kaplan-Meier and Cox proportional hazards regression methods. Median progression-free survival (PFS) was 7 months (range: 4-11 months) and median overall survival (OS) was 14 months (range: 9-23 months). Patients with an ipsilateral SVZ who received ≥50 Gy showed significantly better PFS (8 versus 6 months; p < 0.001) and OS (16 versus 11 months; p < 0.001). Furthermore, lower doses (<32 Gy) to the contralateral SVZ were associated with improved PFS (8 versus 6 months; p = 0.030) and OS (15 versus 11 months; p = 0.001). Targeting the potential tumorigenic cells in the ipsilateral SVZ while sparing contralateral NSCs correlated with an improved outcome. Further studies should address the optimization of dose distribution with modern radiotherapy techniques for the areas surrounding infiltrated and healthy SVZs.

5.
Brain Commun ; 5(2): fcad047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926367

RESUMO

Epileptic seizures require a rapid and safe diagnosis to minimize the time from onset to adequate treatment. Some epileptic seizures can be diagnosed clinically with the respective expertise. For more subtle seizures, imaging is mandatory to rule out treatable structural lesions and potentially life-threatening conditions. MRI perfusion abnormalities associated with epileptic seizures have been reported in CT and MRI studies. However, the interpretation of transient peri-ictal MRI abnormalities is routinely based on qualitative visual analysis and therefore reader dependent. In this retrospective study, we investigated the diagnostic yield of visual analysis of perfusion MRI during ictal and postictal states based on comparative expert ratings in 51 patients. We further propose an automated semi-quantitative method for perfusion analysis to determine perfusion abnormalities observed during ictal and postictal MRI using dynamic susceptibility contrast MRI, which we validated on a subcohort of 27 patients. The semi-quantitative method provides a parcellation of 3D T1-weighted images into 32 standardized cortical regions of interests and subcortical grey matter structures based on a recently proposed method, direct cortical thickness estimation using deep learning-based anatomy segmentation and cortex parcellation for brain anatomy segmentation. Standard perfusion maps from a Food and Drug Administration-approved image analysis tool (Olea Sphere 3.0) were co-registered and investigated for region-wise differences between ictal and postictal states. These results were compared against the visual analysis of two readers experienced in functional image analysis in epilepsy. In the ictal group, cortical hyperperfusion was present in 17/18 patients (94% sensitivity), whereas in the postictal cohort, cortical hypoperfusion was present only in 9/33 (27%) patients while 24/33 (73%) showed normal perfusion. The (semi-)quantitative dynamic susceptibility contrast MRI perfusion analysis indicated increased thalamic perfusion in the ictal cohort and hypoperfusion in the postictal cohort. Visual ratings between expert readers performed well on the patient level, but visual rating agreement was low for analysis of subregions of the brain. The asymmetry of the automated image analysis correlated significantly with the visual consensus ratings of both readers. We conclude that expert analysis of dynamic susceptibility contrast MRI effectively discriminates ictal versus postictal perfusion patterns. Automated perfusion evaluation revealed favourable interpretability and correlated well with the classification of the visual ratings. It may therefore be employed for high-throughput, large-scale perfusion analysis in extended cohorts, especially for research questions with limited expert rater capacity.

6.
Clin Neuroradiol ; 33(1): 171-177, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35960327

RESUMO

PURPOSE: Dual-energy computed tomography (DECT) has been shown to be able to differentiate between intracranial hemorrhage (ICH) and extravasation of iodinated contrast media (contrast staining [CS]). TwinSpiral DECT is a recently introduced technique, which allows image acquisition at two different energy levels in two consecutive spiral scans. The aim of this study was to evaluate the feasibility and accuracy of TwinSpiral DECT to distinguish between ICH and CS after endovascular thrombectomy (EVT) in patients with acute ischemic stroke. METHODS: This retrospective single-center study conducted between November 2019 and July 2020 included non-contrast TwinSpiral DECT scans (tube voltages 80 and 150Sn kVp) of 39 ischemic stroke patients (18 females, 21 males, mean age 69 ± 11 years) within 48-72 h after endovascular thrombectomy. Parenchymal hyperdensity was assessed for the presence of ICH or/and CS by two board certified and fellowship-trained, blinded and independent neuroradiologists using standard mixed images and virtual non-contrast (VNC) images with corresponding iodine maps from TwinSpiral DECT. Follow-up examinations (FU; CT or MRI) were used as a standard of reference. Sensitivity, specificity, and accuracy for the detection of ICH as well as the inter-reader agreement were calculated. RESULTS: Parenchymal hyperdensities were detected in 17/39 (44%) patients. Using DECT, they were classified by both readers as ICH in 9 (53%), CS in 8 (47%), and mixture of both in 6 (35%) cases with excellent agreement (κ = 0.81, P < 0.0001). The sensitivity, specificity, and accuracy for the detection of ICH in DECT was 90% (95% confidence interval [CI]: 84-96%), 100% (95% CI 94-100%) and 95% (95% CI 89-100%), and in mixed images 90% (95% CI 84-96%), 86% (95% CI 80-92%) and 88% (95% CI 82-94%), respectively. Inter-reader agreement for detecting ICH on DECT compared to the mixed images was κ = 1.00 (P < 0.0001) vs. κ = 0.51 (P = 0.034). CONCLUSION: TwinSpiral DECT demonstrates high accuracy and excellent specificity for differentiating ICH from CS in patients after mechanical thrombectomy due to acute ischemic stroke, and improves inter-reader agreement for detecting ICH compared to the standard mixed images.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Estudos de Viabilidade , Tomografia Computadorizada por Raios X/métodos , Sensibilidade e Especificidade , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/cirurgia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Extravasamento de Materiais Terapêuticos e Diagnósticos , Hemorragias Intracranianas , Trombectomia
7.
Ann Anat ; 241: 151905, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150863

RESUMO

The aim of this exploratory study is to analyse whether three-dimensional cinematic rendering image reconstructions offer advantages over conventional volume rendering in the visualisation of cone beam computed tomography (CBCT) and computed tomography (CT) images of the facial skeleton. This is of interest, as some information gets lost during the rendering process. This especially applies to structures in the background of the image and some surface information which can be lost. The commonly applied two-dimensional representation of CBCT or CT images in three different axes requires experience for interpretation. Cinematic rendering is a new three-dimensional post processing reconstruction technique, creating photo realistic visualisations, thus possibly enabling an easier interpretation of the images. In this study, ten investigators assessed ten separate patient cases of the orofacial skeleton. For each case, a conventional volume rendering image reconstruction and a cinematic rendering reconstruction of the same area was created. A specially designed questionnaire assessed both objective and subjective criteria of image perception. Objective criteria were assessed by predefined questions on the visual perception of anatomical image characteristics, showing the two reconstruction types of each case randomly to the investigators in two sessions. Subjective criteria were assessed via a visual analogue scale, showing both reconstructions simultaneously in a third session. The results show that cinematic rendering offers advantages especially in the evaluation of depth perception and three-dimensionality. Volume rendering shows advantages in surface sharpness. Cinematic Rendering was subjectively rated higher for almost all reconstructions. The cinematic rendering process however may cause loss of information and blurring of surfaces compared to volume rendering. With respect to the subjective impression, cinematic rendering scored better than volume rendering. The visualisation is perceived as being very close to reality.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Imageamento Tridimensional/métodos , Percepção , Esqueleto , Tomografia Computadorizada por Raios X/métodos
8.
Neuroradiol J ; 28(5): 508-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26452521

RESUMO

The purpose of this study was to investigate the usefulness of diffusion tensor imaging (DTI) for early detection of pathological alterations in the myelon in patients with cervical spondylotic myelopathy (CSM) without T2-weighted imaging (T2W) signal abnormalities but with a narrowed spinal canal with corresponding clinical correlation. Axial DTI at 1.5T together with routine magnetic resonance imaging was performed on 18 patients fulfilling above mentioned criteria. Quantitative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated. Values at the narrowest cervical levels were compared to pre- and poststenotic levels and the interindividual means were tested for statistically significant differences by means of paired t-tests. The correlation between the grade and width of canal stenosis in the axial plane was measured. FA was significantly reduced at the stenotic level, compared to prestenotic level, whereas no significant differences were found when compared to poststenotic level. No significant differences between ADC values at stenotic level versus both adjacent non-stenotic levels were found, suggesting very early stage of degeneration. ADC values correlated significantly with the width of the spinal canal at the prestenotic level, but not at the poststenotic level. Findings indicate sufficient robustness of routine implementation of DTI at 1.5T to detect abnormalities in the spinal cord of CSM patients, before apparent T2W signal abnormalities and marked clinical deterioration. Therefore, larger and long-term studies should be conducted to establish the DTI scalar metrics that would indicate early intervention for a better clinical outcome in patients with clinical signs of CSM.


Assuntos
Imagem de Tensor de Difusão/métodos , Distrofia Simpática Reflexa/diagnóstico , Idoso , Diagnóstico Precoce , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Estudos Prospectivos
9.
J Clin Neurosci ; 21(11): 1924-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24998855

RESUMO

With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the management of pontine lesions is constantly improving. Among pontine structures with vital functions that are at risk of being damaged by surgical manipulation, cranial nerves (CN) and cranial nerve nuclei (CNN) such as CN V, VI, and VII are critical. Pre-operative localization of the intrapontine course of CN and CNN should be beneficial for surgical outcomes. Our objective was to accurately localize CN and CNN in patients with intra-axial lesions in the pons using diffusion tensor imaging (DTI) and estimate its input in surgical planning for avoiding unintended loss of their function during surgery. DTI of the pons obtained pre-operatively on a 3Tesla MR scanner was analyzed prospectively for the accurate localization of CN and CNN V, VI and VII in seven patients with intra-axial lesions in the pons. Anatomical sections in the pons were used to estimate abnormalities on color-coded fractional anisotropy maps. Imaging abnormalities were correlated with CN symptoms before and after surgery. The course of CN and the area of CNN were identified using DTI pre- and post-operatively. Clinical associations between post-operative improvements and the corresponding CN area of the pons were demonstrated. Our results suggest that pre- and post-operative DTI allows identification of key anatomical structures in the pons and enables estimation of their involvement by pathology. It may predict clinical outcome and help us to better understand the involvement of the intrinsic anatomy by pathological processes.


Assuntos
Neoplasias do Tronco Encefálico/cirurgia , Nervos Cranianos/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Neuroimagem/métodos , Neuronavegação/métodos , Ponte/cirurgia , Adulto , Pontos de Referência Anatômicos , Neoplasias do Tronco Encefálico/complicações , Doenças dos Nervos Cranianos/etiologia , Traumatismos dos Nervos Cranianos/prevenção & controle , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Humanos , Complicações Intraoperatórias/prevenção & controle , Masculino , Microcirurgia/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Adulto Jovem
10.
Clin Kidney J ; 5(5): 405-11, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26019816

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder that results in the growth of cysts in the kidneys and other organs. Multisystemic involvement is common including affection of the central nervous system with cerebral aneurysms and arachnoid cysts. METHODS: This is a prospective cohort study to investigate the prevalence and growth rate of arachnoid cysts in ADPKD patients. Participants enrolled in the SUISSE ADPKD cohort were offered cranial imaging for the detection of intracranial alterations. In the case of identified arachnoid cysts, patients were suggested to undergo follow-up imaging to assess the growth rate of the cysts. Volume of arachnoid cysts at the baseline and at follow-up visits was assessed by manual segmentation on a dedicated workstation. RESULTS: A total of 109 ADPKD patients agreed to undergo cranial imaging. In 14 (12.8%) patients (9 males and 5 females), 18 singular arachnoid cysts were identified. The baseline volumes of individual cysts ranged from 1.8 to 337.6 cm(3). During a mean follow-up period of 24 months, the volume changes of 12 individual arachnoid cysts of nine patients ranged from -3.1 to 3.7 cm(3). Cystic lesions were mostly localized in the middle fossa. All affected patients were clinically asymptomatic. CONCLUSIONS: We found a higher prevalence of arachnoid cysts in ADPKD patients with more advanced disease. There was a large variability in size and growth. These arachnoid cysts were clinically silent and their growth pattern was subtle and unpredictable, in contrast to the much more foreseeable growth of the renal cysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...