Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744488

RESUMO

Despite the recycling challenges in ionic fluids, they have a significant advantage over traditional solvents. Ionic liquids make it easier to separate the end product and recycle old catalysts, particularly when the reaction media is a two-phase system. In the current analysis, the properties of transient, electroviscous, ternary hybrid nanofluid flow through squeezing parallel infinite plates is reported. The ternary hybrid nanofluid is synthesized by dissolving the titanium dioxide (TiO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2) nanoparticles in the carrier fluid glycol/water. The purpose of the current study is to maximize the energy and mass transfer rate for industrial and engineering applications. The phenomena of fluid flow is studied, with the additional effects of the magnetic field, heat absorption/generation, chemical reaction, and activation energy. The ternary hybrid nanofluid flow is modeled in the form of a system of partial differential equations, which are subsequently simplified to a set of ordinary differential equations through resemblance substitution. The obtained nonlinear set of dimensionless ordinary differential equations is further solved, via the parametric continuation method. For validity purposes, the outcomes are statistically compared to an existing study. The results are physically illustrated through figures and tables. It is noticed that the mass transfer rate accelerates with the rising values of Lewis number, activation energy, and chemical reaction. The velocity and energy transfer rate boost the addition of ternary NPs to the base fluid.

2.
PLoS One ; 17(4): e0266065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35395043

RESUMO

Flow around circular cylinder has been extensively studied by researchers for several decades due to its wide range of engineering applications such as in heat exchangers, marine cables, high rise building, chimneys, and offshore structures. The lack of clear understanding of the unsteady flow dynamics in the wake of circular cylinder and high computational cost are still an area of high interest amongst the researchers. The aim of the current study is to investigate the effect of variation in spanwise length and grid resolution in the spanwise direction on the recirculation length, separation angle of wake flow by performing large eddy simulations (LES). This study is an extension to previous work by Khan, NB et al, 2019 in which the spanwise length is restricted to 4D only. In current study, the spanwise length is changed from 0.5D to 8D where D is diameter of cylinder and mesh resolution in the spanwise direction is changed from 1 to 80 elements in the present study. The recirculation length, separation angle and wake characteristics are analyzed in detail. It is concluded that after getting optimize spanwise length, mesh resolution in the spanwise direction is the only parameter contributing toward better result.


Assuntos
Telas Cirúrgicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...