Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9021, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270550

RESUMO

In this work, the effect of the molar ratio of (Ni2+ and Fe3+) on the properties of CdO-NiO-Fe2O3 nanocomposites was investigated. The synthesis of CdO-NiO-Fe2O3 nanocomposites was carried out by self-combustion. XRD, UV-Vis, PL and VSM were used to describe the physical properties of the materials. The results showed significant progress in structural and optical properties supporting antibacterial activity. For all samples, the particle size decreased from 28.96 to 24.95 nm with increasing Ni2+ content and decreasing Fe3+ content, as shown by the XRD pattern, which also shows the crystal structure of cubic CdO, cubic NiO, and cubic γ-Fe2O3 spinel. The Ni2+ and Fe3+ contents in the CdO-NiO-Fe2O3 nanocomposites have also been shown to enhance the ferromagnetic properties. Due to the significant coupling between Fe2O3 and NiO, the coercivity Hc values of the samples increase from 66.4 to 266 Oe. The potential of the nanocomposites for antibacterial activity was investigated against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Moraxella catarrhalis) bacteria. Comparison of P. aeruginosa with E. coli, S. aureus and M. catarrhalis showed that it has a stronger antibacterial activity with a ZOI of 25 mm.


Assuntos
Nanocompostos , Staphylococcus aureus , Escherichia coli , Antibacterianos/química , Óxidos/química , Nanocompostos/química , Fenômenos Magnéticos
2.
ACS Omega ; 7(42): 37340-37350, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312413

RESUMO

We report a simple method to prepare colloidal trimetallic (Ni-Cu)@Ag core@shell nanoparticles (NPs) without stabilizing materials. Experimental evidence was found for the successful synthesis of these NPs using X-ray diffraction (XRD), optical spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The presence of core metals (Ni and Cu) was confirmed by elemental analysis using a total reflection X-ray fluorescence (TXRF) analysis. In addition, the absorption spectra of the prepared samples exhibited broad bands compared to the bands of the monometallic NPs, indicating the formation of a core-shell nanostructure. The antibacterial activity of the trimetallic NPs was evaluated against three Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Salmonella) and two Gram-positive (Streptococcus and Staphylococcus aureus) bacteria on Mueller-Hinton agar. These NPs showed high inhibition of bacterial growth at the low sample concentrations used in this study compared to other nanomaterials. One of the interesting results of the current study is that the inhibition zone of Pseudomonas aeruginosa as a resistant bacterium was high for most NPs. These results make the prepared samples promising candidates for antibiotic material applications.

3.
ACS Omega ; 7(26): 22492-22499, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811925

RESUMO

In this work, the carbon monoxide (CO) detection property of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/poly(p-anisidine) (PEDOT:PSS/PPA) nanocomposite was systematically investigated at room temperature. The PEDOT:PSS/PPA nanocomposite was synthesized by the cost-effective "in situ chemical oxidation polymerization" technique. The electric, optical, spectroscopic, and structural properties of the as-prepared nanomaterials were analyzed with I-V, UV-vis, Raman, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) spectroscopies. Topological investigations of materials were conducted by atomic force microscopy (AFM). The gas-sensing performance of the PEDOT:PSS/PPA and PEDOT:PSS nanocomposites toward CO gas in the concentration range of 50-300 ppm at room temperature was explored, and their performances were compared. The PEDOT:PSS/PPA sensor shows a perfectly linear response to different concentrations (50-300 ppm) of CO gas (R 2 = 0.9885), and the response time and recovery time of the CO gas sensor (100 ppm) can be about 58 and 61 s, respectively, showing high sensitivity to CO gas and rapid response recovery with outstanding stability. Thus, the PEDOT:PSS/PPA-based sensors, with their impressive sensing performance, may give assurance for future high-performance CO-sensing applications.

4.
ChemTexts ; 8(1): 9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223376

RESUMO

Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs.

5.
Nanomaterials (Basel) ; 11(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34443973

RESUMO

In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...