Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(11): 4662-4685, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37705440

RESUMO

Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.


Assuntos
Biomimética , Engenharia Tecidual , Técnicas de Cultura de Células , Microambiente Celular , Microfluídica
2.
Biomater Adv ; 153: 213567, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540940

RESUMO

Tissue-engineered articular cartilage constructs are currently not able to equal native tissues in terms of mechanical and biological properties. A major cause lies in the deficiency in engineering the biomechanical microenvironment (BMME) of articular chondrocytes. In this work, to engineer the BMME of articular chondrocytes, heterogeneous hydrogel structures of gelatin methacrylated (GelMA) containing differential-stiffness domains were first fabricated, and then periodic dynamic mechanical stimulations were applied to the hydrogel structures. The chondrocyte phenotype of ATDC5 cells was enhanced as the spatial differentiation in stiffness was increased in the hydrogel structures and was further strengthened by dynamic mechanical stimulation. It was speculated that the mechanical signals generated by the engineered BMME were sensed by the cells through the integrin ß1-FAK signaling pathway. This study revealed the key role of the combined effects of differential and dynamic BMME on the chondrocyte phenotype, which could provide theoretical guidance for highly active tissue-engineered articular cartilage.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/metabolismo , Hidrogéis/análise , Gelatina , Cartilagem Articular/fisiologia , Engenharia Tecidual
3.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239888

RESUMO

Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.


Assuntos
Vesículas Extracelulares , Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiologia , Bactérias Gram-Negativas , Infecções por Helicobacter/microbiologia
4.
Macromol Biosci ; 22(10): e2200201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962940

RESUMO

Chronic wounds are associated with infectious microbial complex communities called biofilms. The management of chronic wound infection is limited by the complexity of selecting an appropriate antimicrobial dressing with antibiofilm activity due to antimicrobial resistance in biofilms. Herein, the in situ developed bacterial cellulose/poly(vinyl alcohol) (BC-PVA) composite is ex situ modified with genipin-crosslinked silk sericin (SS) and azithromycin (AZM) (SSga). The composite is evaluated as a wound dressing material for preventing the development, dispersion, and/or eradication of microbial biofilm. Fourier transform infrared spectroscopy confirms the intermolecular interactions between the components of BC-PVA@SSga scaffolds. The addition of PVA during BC production significantly increases the porosity from 53.5% ± 2.3% to 83.5% ± 2.9%, the pore size from 2.3 ± 1.9 to 16.8 ± 4.5 µm, the fiber diameter from 35.5 ± 10 to 120 ± 27.4 nm, and improves the thermal stability and flexibility. Studies using bacteria and fungi indicate high inhibition and disruption of biofilms upon AZM addition. In vitro biocompatibility analysis confirms the nontoxic nature of BC-PVA@SSga toward HaCaT and NIH3T3 cells, whereas the addition of SS enhances cell proliferation. The developed BC-PVA@SSga accelerates wound healing in the infected mouse model, thus can be a promising wound dressing biomaterial.


Assuntos
Anti-Infecciosos , Sericinas , Animais , Azitromicina/farmacologia , Bactérias , Materiais Biocompatíveis , Biofilmes , Celulose/farmacologia , Camundongos , Células NIH 3T3 , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Porosidade , Sericinas/química , Sericinas/farmacologia
5.
Carbohydr Polym ; 281: 119034, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074114

RESUMO

To achieve long-term patent small-diameter (<6 mm) vascular implants, biomimetic vascular grafts have gained much attention in promoting in situ blood vessel regeneration. In this study, hierarchical-structured bacterial cellulose/potato starch (BC/PS) composites were biosynthesized by the addition of swollen PS. Investigations on the physicochemical properties of BC/PS composites showed that the properties could be improved and tailored by the addition of swollen PS. The composites displayed a morphology, water content, thermal properties, mechanical properties, and biocompatibility appropriate for vascular tissue engineering. Most importantly, the BC/PS grafts, with a dense inner surface and a circumferential macroporous outer layer, possessed 75% patency and promoted rapid blood vessel regeneration in in vivo assessment on rabbits, with complete endothelium monolayer, organized smooth muscle cells, rich new capillaries, and deposited extracellular matrix. Collectively, these findings demonstrate that hierarchical-structured BC/PS tubes hold great promise as artificial small-diameter vascular grafts.


Assuntos
Celulose , Solanum tuberosum , Animais , Prótese Vascular , Celulose/química , Celulose/farmacologia , Coelhos , Amido , Engenharia Tecidual
6.
Polymers (Basel) ; 13(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34301067

RESUMO

The unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials. First, yeast biomass and BC hydrogels were produced by Meyerozyma guilliermondii (MT502203.1) and Gluconacetobacter xylinus (ATCC53582), respectively, and then the films were developed ex situ by mixing 30 wt.% CMC, 30 wt.% Gly, 2 wt.% yeast dry biomass, and 2 wt.% BC slurry. FE-SEM observation showed the successful incorporation of Gly and yeast into the fibrous cellulose matrix. FTIR spectroscopy confirmed the development of composite films through chemical interaction between BC, CMC, Gly, and yeast. The developed BC/CMC/Gly/yeast composite films showed high water solubility (42.86%). The yeast-incorporated films showed antimicrobial activities against three microbial strains, including Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces aureus, by producing clear inhibition zones of 16 mm, 10 mm, and 15 mm, respectively, after 24 h. Moreover, the films were non-toxic against NIH-3T3 fibroblast cells. Finally, the coating of oranges and tomatoes with BC/CMC/Gly/yeast composites enhanced the shelf life at different storage temperatures. The BC/CMC/Gly/yeast composite film-coated oranges and tomatoes demonstrated acceptable sensory features such as odor and color, not only at 6 °C but also at room temperature and further elevated temperatures at 30 °C and 40 °C for up to two weeks. The findings of this study indicate that the developed BC/CMC/Gly/yeast composite films could be used as edible packaging material with high nutritional value and distinctive properties related to the film component, which would provide protection to foods and extend their shelf life, and thus could find applications in the food industry.

7.
Life Sci ; 279: 119644, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048813

RESUMO

Bacterial-derived extracellular vesicles could play a major role in attenuating and treating diseases. They play a major anti-infection role by modulating immune responses against pathogens and preventing infection by inhibiting pathogen localization and proliferation. In this study, outer membrane vesicles (ExHp-CD) released by Helicobacter pylori SS1 (H. pylori) and total antigens isolated from H. pylori SS1 (AgHp) were evaluated for their immunogenic potential and their effect on macrophage RAW 264.7 cells. Results demonstrated that both ExHp-CD and AgHp induced T helper 2 (Th2) immune response, which was reported to be important in immune protection against H. pylori infections. Both ExHp-CD and AgHp produced high levels of IL-10 and IL-4, while no significant levels of IL-12 p70 or IFN-γ were detected. However, ExHp-CD showed a better effect on macrophage RAW 264.7 cells compared to AgHp. Macrophage RAW 264.7 cells stimulated with 5, and 10 µg/mL of ExHp-CD showed an increased ratio of CD206 (M2 phenotype marker) and a decreased ratio of CD86 (M1 phenotype marker). Moreover, results suggested that the immunogenic effect that ExHp-CD possesses was attributed to their cargo of Epimerase_2 domain-containing protein (Epi_2D), Probable malate:quinone oxidoreductase (Pro_mqo), and Probable cytosol aminopeptidase (Pro_ca). Results demonstrated that ExHp-CD possesses an immunological activity to induce Th2 immune response against H. pylori infection with results comparable to AgHp. However, ExHp-CD showed higher efficacy regarding safety, biocompatibility, lack of toxicity, and hemocompatibility. Thus, it could serve as an immunogenic candidate with more desired characteristics.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vesículas Extracelulares/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Imunidade Celular/imunologia , Macrófagos/imunologia , Animais , Infecções por Helicobacter/imunologia , Interações Hospedeiro-Patógeno , Camundongos , Células RAW 264.7
8.
Adv Healthc Mater ; 10(14): e2100402, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050616

RESUMO

Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.


Assuntos
Nanopartículas , Selênio , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Celulose , Escherichia coli , Gelatina , Humanos , Hidrogéis , Ratos , Staphylococcus aureus
9.
Life Sci ; 264: 118653, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115606

RESUMO

The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a substantial stressor that is greatly impacting environmental sustainability. Besides, the different pre-existing environmental stressors and coronavirus disease-2019 (COVID-19)-related stressors are further worsening the effects of the viral disease by inducing the generation of oxidative stress. The generated oxidative stress results in nucleic acid damage associated with viral mutations, that could potentially reduce the effectiveness of COVID-19 management, including the vaccine approach. The current review is aimed to overview the impact of the oxidative stress damage induced by various environmental stressors on COVID-19. The available data regarding the COVID-19-related stressors and the effects of oxidative stress damage induced by the chronic stress, exposure to free radicals, and malnutrition are also analyzed to showcase the promising options, which could be investigated further for sustainable control of the pandemic.


Assuntos
COVID-19/virologia , Dano ao DNA/genética , Estresse Oxidativo/genética , SARS-CoV-2/genética , Antioxidantes/uso terapêutico , Dieta Saudável , Gerenciamento Clínico , Estilo de Vida Saudável , Humanos , Mutação , Pandemias , Tratamento Farmacológico da COVID-19
10.
Biomed Pharmacother ; 133: 111008, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227708

RESUMO

The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn the attention of researchers and clinicians from several disciplines and sectors who are trying to find durable solutions both at preventive and treatment levels. To date, there is no approved effective treatment or vaccine available to control the coronavirus disease-2019 (COVID-19). The preliminary in vitro studies on viral infection models showed potential antiviral activities of type I and III interferons (IFNs), chloroquine (CQ)/hydroxychloroquine (HCQ), and azithromycin (AZM); however, the clinical studies on COVID-19 patients treated with CQ/HCQ and AZM led to controversies in different regions due to their adverse side effects, as well as their combined treatment could prolong the QT interval. Interestingly, the treatment with type I IFNs showed encouraging results. Moreover, the different preliminary reports of COVID-19 candidate vaccines showcase promising results by inducing the production of a high level of neutralizing antibodies (NAbs) and specific T cell-mediated immune response in almost all participants. The present review aims to summarize and analyze the recent progress evidence concerning the use of IFNs, CQ/HCQ, and AZM for the treatment of COVID-19. The available data on immunization options to prevent the COVID-19 are also analyzed with the aim to present the promising options which could be investigated in future for sustainable control of the pandemic.


Assuntos
Antivirais/uso terapêutico , Azitromicina/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Cloroquina/uso terapêutico , Interferons/uso terapêutico , Humanos , Hidroxicloroquina/uso terapêutico , Resultado do Tratamento
11.
J Biotechnol ; 161(3): 235-41, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-22796094

RESUMO

Styrene monooxygenase (SMO) catalyzes the first step of styrene degradation, and also serves as an important enzyme for the synthesis of enantiopure epoxides. To enhance its activity, molecular docking of styrene was performed based on the X-ray crystal structure of the oxygenase subunit of SMO to identify three amino acid residues (Tyr73, His76 and Ser96) being adjacent to the phenyl ring of styrene. Variants at those positions were constructed and their enzymatic activities were analyzed. Three mutants (Y73V, Y73F, and S96A) were found to exhibit higher enzymatic activities than the wild-type in the epoxidation of styrene, while retaining excellent stereoselectivity. The specific epoxidation activity of the most active mutant S96A toward styrene and trans-ß-methyl styrene were 2.6 and 2.3-fold of the wild-type, respectively. In addition, the Y73V mutant showed an unexpected reversal of enantiomeric preference toward 1-phenylcyclohexene.


Assuntos
Domínio Catalítico/genética , Mutação/genética , Oxigenases/genética , Oxigenases/metabolismo , Pseudomonas putida/enzimologia , Sequência de Aminoácidos , Biocatálise , Biotransformação , Compostos de Epóxi/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxigenases/química , Alinhamento de Sequência , Estereoisomerismo , Estireno/química , Estireno/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...