Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811720

RESUMO

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Assuntos
Coartação Aórtica , Cardiopatias Congênitas , Recém-Nascido , Humanos , Miócitos Cardíacos , Células Endoteliais , Cardiopatias Congênitas/genética , Mutação/genética , MAP Quinase Quinase Quinases/genética
2.
Acta Neuropathol ; 146(3): 395-414, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354322

RESUMO

Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofluorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across different cell types and brain regions in controls (n = 3) and evaluated whether tau cytopathology affects MAPT expression in PSP (n = 3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.


Assuntos
Paralisia Supranuclear Progressiva , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/patologia , Citologia , Neuroglia/patologia , Neurônios/patologia , Expressão Gênica
3.
STAR Protoc ; 3(2): 101379, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35582459

RESUMO

We describe the protocol for identifying COVID-19 severity specific cell types and their regulatory marker genes using single-cell transcriptomics data. We construct COVID-19 comorbid disease-associated gene list using multiple databases and literature resources. Next, we identify specific cell type where comorbid genes are upregulated. We further characterize the identified cell type using gene enrichment analysis. We detect upregulation of marker gene restricted to severe COVID-19 cell type and validate our findings using in silico, in vivo, and in vitro cellular models. For complete details on the use and execution of this protocol, please refer to Nassir et al. (2021b).


Assuntos
COVID-19 , Biomarcadores , COVID-19/genética , Humanos , Transcriptoma/genética
4.
Neurogenetics ; 23(2): 137-149, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325322

RESUMO

Copy number variations (CNVs) are highly implicated in the etiology of neurodevelopmental disorders (NDDs), and chromosomal microarray analysis (CMA) has been recommended as a first-tier test for many NDDs. We undertook a study to identify clinically relevant CNVs and genes in an ethnically homogenous population of the United Arab Emirates. We genotyped 98 patients with NDDs using genome-wide chromosomal microarray analysis, and observed 47.1% deletion and 52.9% duplication CNVs, of which 11.8% are pathogenic, 23.5% are likely pathogenic, and 64.7% VOUS. The average size of copy number losses (3.9 Mb) was generally higher than of gains (738.4 kb). Analysis of VOUS CNVs for constrained genes (enrichment for brain critical exons and high pLI genes) yielded 7 unique genes. Among these 7 constrained genes, we propose FNTA and PXK as potential candidate genes for neurodevelopmental disorders, which warrants further investigation. Thirty-two overlapping CNVs (Decipher and ClinVar) containing the FNTA gene were previously identified in NDD patients and 6 overlapping CNVs (Decipher and ClinVar) containing the PXK gene were previously identified in NDD patients. Our study supports the utility of CMA for CNV profiling which aids in precise genetic diagnosis and its integration into therapeutics and management of NDD patients.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Neurodesenvolvimento , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Humanos , Análise em Microsséries , Transtornos do Neurodesenvolvimento/genética , Emirados Árabes Unidos
5.
Hum Genomics ; 15(1): 68, 2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34802461

RESUMO

BACKGROUND: In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of 'brain to behaviour' pathogenic mechanisms, remains largely unknown. METHODS: We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single-cell transcriptomes (> million cells) and de novo loss-of-function (LOF) ASD variants (impacting 852 genes from 40,122 cases). RESULTS: We identified multiple single-cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment with ASD loss-of-function variant genes (p < 5.23 × 10-11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large-scale human and mouse brain single-cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 × 10-11, oligodendrocyte, p < 1.31 × 10-09). CONCLUSION: Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD and the need to explore other biological pathways for this disorder.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Éxons , Regulação da Expressão Gênica , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroglia/patologia , Receptores de Superfície Celular/genética , Transcriptoma/genética
6.
iScience ; 24(9): 103030, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34458692

RESUMO

Understanding host cell heterogeneity is critical for unraveling disease mechanism. Utilizing large-scale single-cell transcriptomics, we analyzed multiple tissue specimens from patients with life-threatening COVID-19 pneumonia, compared with healthy controls. We identified a subtype of monocyte-derived alveolar macrophages (MoAMs) where genes associated with severe COVID-19 comorbidities are significantly upregulated in bronchoalveolar lavage fluid of critical cases. FCGR3B consistently demarcated MoAM subset in different samples from severe COVID-19 cohorts and in CCL3L1-upregulated cells from nasopharyngeal swabs. In silico findings were validated by upregulation of FCGR3B in nasopharyngeal swabs of severe ICU COVID-19 cases, particularly in older patients and those with comorbidities. Additional lines of evidence from transcriptomic data and in vivo of severe COVID-19 cases suggest that FCGR3B may identify a specific subtype of MoAM in patients with severe COVID-19 that may present a novel biomarker for screening and prognosis, as well as a potential therapeutic target.

7.
Case Rep Crit Care ; 2016: 4275651, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579186

RESUMO

Diabetic ketoacidosis (DKA) is characterized by elevated anion gap metabolic acidosis, hyperglycemia, and elevated ketones in urine and blood. Hyperglycemia is a key component of DKA; however, a subset of DKA patients can present with near-normal blood glucose, an entity described as "euglycemic DKA." This rare phenomenon is thought to be due to starvation and food restriction in insulin dependent diabetic patients. Cocaine abuse is considered a trigger for development of DKA. Cocaine also has anorexic effects. We describe an interesting case of euglycemic DKA in a middle-aged diabetic female presenting with elevated anion gap metabolic acidosis, with near-normal blood glucose, in the settings of noncompliance to insulin and cocaine abuse. We have postulated that cocaine abuse was implicated in the pathophysiology of euglycemic DKA in this case. This case highlights complex physiological interplay between type-1 diabetes, noncompliance to insulin, and cocaine abuse leading to DKA, with starvation physiology causing development of euglycemic DKA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...