Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(3): 833-855, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617426

RESUMO

Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Citomegalovirus , Simulação de Dinâmica Molecular , Recém-Nascido , Humanos , Simulação de Acoplamento Molecular , Epitopos de Linfócito T , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas , Biologia Computacional/métodos
2.
Biosens Bioelectron ; 217: 114658, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115122

RESUMO

Microelectrodes as analytical sensing tools have gained immense popularity in a wide range of applications, ranging from probe design advancement to single live cell imaging. Micro-optical-ring electrodes (MOREs) are micro-scale ring-electrodes with an optical fiber core, that enables the MORE to conduct an optical signal while performing electrochemistry. Herein, we present a user-friendly and cost-effective method to fabricate MOREs for scanning photoelectrochemical microscopy (SPECM) applications. MOREs were characterized by electrochemistry, numerical modelling, and scanning electron microscopy (SEM), ensuring reproducibility in terms of a well-defined geometry and functionality. In this study, the integration of MOREs into scanning probe microscopy enabled the spectro-electrochemical detection of N, N, N, N'- Tetramethyl-p-phenyl-enediamine (TMPD) and its oxidized radical cation counterpart. UV-VIS spectroscopy capabilities of MOREs were optimized through tip-to-substrate distance variations. To demonstrate the applicability of MOREs to electrochemical single live cell imaging, oxygen production was detected in living algae (Eremosphaera viridis) by local illumination and concurrent electrochemical measurements.


Assuntos
Técnicas Biossensoriais , Microscopia , Técnicas Biossensoriais/métodos , Eletrodos , Microeletrodos , Microscopia Eletrônica de Varredura , Oxigênio , Reprodutibilidade dos Testes
3.
Front Med (Lausanne) ; 9: 872627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991668

RESUMO

While the COVID-19 pandemic takes the world by storm, dengue-endemic regions risk developing a co-epidemic in COVID-19/dengue coinfection. With both infections as causes of high morbidity rates, the potentially fatal outcomes of coinfection are even greater, and several cases are emerging, severe and moderate, showing how common it may become in certain regions. The case reported here shows a 38-year-old male patient with high-grade fever, with complaints of nausea, joint, and muscle aches, all characteristic symptoms of COVID-19 and dengue. Initially suspected of being infected with COVID-19 only, the RT-PCR test of the nasopharyngeal swab confirmed COVID-19 infection, while the positive reactivity to IgG and IgM in the Dengue Duo test revealed a dengue coinfection. Except for the persistent high fever, the Patient's symptoms were not severe, although the tests confirmed the infections to be "moderate to severe" and showed steady and rapid recovery. The tests showed some interesting results, which provided additional research opportunities. Overall, this case report illustrates the existence of coinfections in the Philippines, demonstrating the difficulty in distinguishing the two infections and the need for proper diagnosis, prevention, and management measures.

4.
Front Immunol ; 13: 863234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720422

RESUMO

Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment's safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine's safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.


Assuntos
COVID-19 , Mucormicose , COVID-19/prevenção & controle , Epitopos de Linfócito B , Epitopos de Linfócito T , Fungos , Humanos , Ferro/metabolismo , Simulação de Acoplamento Molecular , Mucormicose/microbiologia , Mucormicose/prevenção & controle , SARS-CoV-2 , Vacinas Combinadas , Vacinas de Subunidades Antigênicas
5.
Curr Microbiol ; 79(5): 127, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287179

RESUMO

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 sequelae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.


Assuntos
COVID-19 , Candidíase , Candida/genética , Causalidade , Humanos , SARS-CoV-2
6.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960517

RESUMO

Physiological measures, such as heart rate variability (HRV) and beats per minute (BPM), can be powerful health indicators of respiratory infections. HRV and BPM can be acquired through widely available wrist-worn biometric wearables and smartphones. Successive abnormal changes in these indicators could potentially be an early sign of respiratory infections such as COVID-19. Thus, wearables and smartphones should play a significant role in combating COVID-19 through the early detection supported by other contextual data and artificial intelligence (AI) techniques. In this paper, we investigate the role of the heart measurements (i.e., HRV and BPM) collected from wearables and smartphones in demonstrating early onsets of the inflammatory response to the COVID-19. The AI framework consists of two blocks: an interpretable prediction model to classify the HRV measurements status (as normal or affected by inflammation) and a recurrent neural network (RNN) to analyze users' daily status (i.e., textual logs in a mobile application). Both classification decisions are integrated to generate the final decision as either "potentially COVID-19 infected" or "no evident signs of infection". We used a publicly available dataset, which comprises 186 patients with more than 3200 HRV readings and numerous user textual logs. The first evaluation of the approach showed an accuracy of 83.34 ± 1.68% with 0.91, 0.88, 0.89 precision, recall, and F1-Score, respectively, in predicting the infection two days before the onset of the symptoms supported by a model interpretation using the local interpretable model-agnostic explanations (LIME).


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Inteligência Artificial , Humanos , SARS-CoV-2 , Smartphone
7.
Biochem Biophys Rep ; 27: 101074, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34345719

RESUMO

Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein which is involved in cell signaling, proliferation, maturation, and movement, all of which are crucial for the proper development of cells and tissues. Cleavage of the EpCAM protein leads to the up-regulation of c-myc, e-fabp, and cyclins A and E which promote tumorigenesis. EpCAM can act as potential diagnostic and prognostic biomarker for different types of cancers as it is also found to be expressed in epithelia and epithelial-derived neoplasms. Hence, we aimed to analyze the EpCAM gene expression and any associated feedback in the patients of two major types of lung cancer (LC) i.e., lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), based on the publicly available online databases. In this study, server-based gene expression analysis represents the up-regulation of EpCAM in both LUAD and LUSC subtypes as compared to the corresponding normal tissues. Besides, the histological sections revealed the over-expression of EpCAM protein in cancerous tissues by depicting strong staining signals. Furthermore, mutation analysis suggested missense as the predominant type of mutation both in LUAD and LUSC in the EpCAM gene. A significant correlation (P-value < 0.05) between the higher EpCAM expression and lower patient survival was also found in this study. Finally, the co-expressed genes were identified with their ontological features and signaling pathways associated in LC development. The overall study suggests EpCAM to be a significant biomarker for human LC prognosis.

8.
Brain Behav Evol ; 76(1): 71-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20926857

RESUMO

Previous work has suggested that the peptide corticotropin-releasing factor (CRF) acts to inhibit visually guided feeding in anurans, but little is known about potential targets for CRF within the subcortical visuomotor circuitry. Here we investigated the relationship between CRF neuronal organization and visual pathways in toads. CRF-immunoreactive (ir) neurons and fibers were widely distributed throughout the ventral subpallial telencephalon and hypothalamus, although few fibers were found in telencephalic areas, such as the striatum, that are known to project to the tectum in anurans. Large populations of CRF-ir cells were observed in the bed nucleus of the stria terminalis and preoptic area as well as in the ventral infundibular hypothalamus. CRF-ir neurons and fibers also were observed in several midbrain and brain stem areas. Colchicine treatment significantly enhanced CRF-ir neurons and fibers throughout the brain, and revealed CRF-ir cell groups in several brain areas (including the dorsal hypothalamus) that were not observed in untreated animals. Intrinsic CRF-immunoreactive neurons were routinely observed in cell layer 8 and sometimes in layer 6 of the optic tectum in both untreated and colchicine-treated animals. CRF was detected in toad optic tectum by radioimmunoassay, although tectal CRF content was less than that of the hypothalamus and forebrain. Unilateral eye ablation did not affect CRF content of the contralateral optic tectum. We conclude that CRF-producing neurons are widely distributed in several areas of the toad brain known to be involved in regulating the behavioral, autonomic and endocrine response to stressors, including the optic tectum and several brain areas known to project to the optic tectum. Furthermore, retinal afferents do not contribute significantly to tectal CRF content.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Retina/citologia , Teto do Mesencéfalo/citologia , Xenopus/anatomia & histologia , Animais , Colchicina/farmacologia , Enucleação Ocular , Masculino , Filogenia , Radioimunoensaio/métodos , Especificidade da Espécie , Teto do Mesencéfalo/efeitos dos fármacos , Urocortinas/metabolismo , Vasotocina/metabolismo , Vias Visuais/anatomia & histologia , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...