Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychiatr Res ; 172: 171-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394763

RESUMO

RATIONALE: Depression is the most prevalent psychiatric disorder worldwide. Although numerous antidepressant treatments are available, there is a serious clinical concern due to their severe side effects and the fact that some depressed patients are resistant to them. Lithium is the drug of choice for bipolar depression and has been used as adjunct therapy with other groups of antidepressants. OBJECTIVES: The present study aims to investigate the effect of lithium augmentation with cerebrolysin on the neurochemical, behavioral and histopathological alterations induced in the reserpine model of depression. METHODS: The animals were divided into control and reserpine-induced model of depression. The model animals were further divided into rat model of depression, rat model treated with lithium, rat model treated with cerebrolysin and rat model treated with a combination of lithium and cerebrolysin. RESULTS: Treatment with lithium, cerebrolysin, or their combination alleviated most of the changes in behavior, oxidative stress parameters, acetylcholinesterase and monoamines in the cortex and hippocampus of the reserpine-induced model of depression. It also improved the alterations in brain-derived neurotrophic factor (BDNF) and histopathology induced by reserpine. CONCLUSIONS: The augmentation of lithium with cerebrolysin showed a clear beneficial effect in the present model of depression suggesting the use of cerebrolysin as an adjuvant in antidepressant treatment.


Assuntos
Aminoácidos , Depressão , Lítio , Humanos , Ratos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Reserpina , Acetilcolinesterase , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo
2.
Sci Rep ; 13(1): 7321, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147356

RESUMO

Many chemotherapeutic drugs cause adverse pulmonary reactions leading to severe pulmonary disease. Though methotrexate (MTX) is used for the treatment of cancer and other diseases, it is highly toxic with multiple adverse effects including pulmonary toxicity. Essential oils represent an open frontier for pharmaceutical sciences due to their wide range of pharmacological properties. Pumpkin seeds oil (PSO) was used to investigate its ability to alleviate methotrexate-induced lung toxicity in rats. Lung tissue from MTX-treated group revealed a decrease in malondialdehyde, glutathione, and nitric oxide accompanied by a marked inhibition in cholinesterase activity, and enhanced catalase activity, tumor necrosis factor-α, interleukin-6 and vascular endothelial growth factor levels. Analysis of PSO revealed that the oil was rich in hexadecanoic acid, decane methyl esters, squalene, polydecane, docosane, and other derivatives. Administration of PSO ameliorated the oxidant/antioxidant and proinflammatory changes induced by MTX in the lung tissue. Histological examinations confirmed the potency of PSO in reducing the histopathological alterations induced by MTX. Immunohistochemical analysis showed decreased nuclear factor-kappa B and caspase 3 expression after PSO. The present data indicated the protective efficiency of PSO against MTX-induced lung injury by decreasing oxidative damage, inflammation and apoptosis and could thus be recommended as an adjuvant therapy.


Assuntos
Cucurbita , Metotrexato , Ratos , Animais , Metotrexato/toxicidade , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/farmacologia , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Estresse Oxidativo , Pulmão
3.
Metab Brain Dis ; 38(5): 1513-1529, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847968

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Masculino , Animais , Reserpina/farmacologia , Ratos Wistar , Lítio , Acetilcolinesterase , Modelos Animais de Doenças
4.
BMC Pharmacol Toxicol ; 23(1): 40, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705968

RESUMO

BACKGROUND: The current study evaluates the free gallic acid (GA) and GA-loaded mesoporous silica nanoparticles (MSNs) antidepressant efficacy in a rat model of depression caused by reserpine. METHODS: By using a scanning electron microscope (SEM), dynamic light scattering (DLS), and zeta potential, MSNs and GA-loaded MSNs were characterized. The efficiency of encapsulation and the release of GA-loaded MSNs were also investigated. The effect of GA, either in its free form or loaded on (MSNs) on oxidative stress biomarkers and monoamine neurotransmitters levels (serotonin (5-HT), norepinephrine (NEP), and dopamine (DA)), were evaluated in these areas (cortex, hippocampus, striatum, and hypothalamus) of control, a depression model of rat, a depression model of rat treated with either free GA, MSNs or GA loaded MSNs. The forced swimming test (FST) also the open field test (OFT) were carried out to evaluate the behavioral changes in all groups. RESULTS: Reserpine caused a decrease in the time spent in motor and swimming activity besides increasing the time of immobility, as demonstrated by OFT and FST. Significantly reductions in 5-HT, NEP, and DA were obtained in the cortex, hippocampus, hypothalamus, and striatum of reserpine-treated rats. Free GA was more effective in increasing the serotonin level in the cortex, hippocampus, and hypothalamus, while GA-loaded MSNs were more effective in increasing it in the striatum. GA-loaded MSNs also increased the level of NEP in the four studied brain areas. Free GA increased dopamine levels in the cortex and striatum, whereas GA-loaded MSNs increased DA levels in the hippocampus and hypothalamus compared with the depressed untreated group. CONCLUSIONS: MSNs can be used as a drug delivery system to target GA selectively to specific brain areas.


Assuntos
Nanopartículas , Reserpina , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Dopamina , Ácido Gálico/farmacologia , Norepinefrina , Ratos , Ratos Wistar , Serotonina , Dióxido de Silício
5.
Toxicol Ind Health ; 34(12): 860-872, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345898

RESUMO

The extensive use of mobile phones worldwide has raised increasing concerns about the effects of electromagnetic radiation (EMR) on the brain due to the proximity of the mobile phone to the head and the appearance of several adverse neurological effects after mobile phone use. It has been hypothesized that the EMR-induced neurological effects may be mediated by amino acid neurotransmitters. Thus, the present study investigated the effect of EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) on the concentrations of amino acid neurotransmitters (glutamic acid, aspartic acid, gamma aminobutyric acid, glycine, taurine, and the amide glutamine) in the hippocampus, striatum, and hypothalamus of juvenile and young adult rats. The juvenile and young adult animals were each divided into two groups: control rats and rats exposed to EMR 1 h daily for 1, 2, and 4 months. A subgroup of rats were exposed daily to EMR for 4 months and then left without exposure for 1 month to study the recovery from EMR exposure. Amino acid neurotransmitters were measured in the hippocampus, striatum, and hypothalamus using high-performance liquid chromatography. Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure.


Assuntos
Aminoácidos/efeitos da radiação , Encéfalo/efeitos da radiação , Radiação Eletromagnética , Neurotransmissores/efeitos da radiação , Fatores Etários , Animais , Telefone Celular , Cromatografia Líquida de Alta Pressão , Campos Eletromagnéticos/efeitos adversos , Masculino , Ratos , Ratos Wistar
6.
Electromagn Biol Med ; 36(1): 63-73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27400086

RESUMO

Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm2, SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.


Assuntos
Catequina/análogos & derivados , Radiação Eletromagnética , Hipocampo/metabolismo , Neostriado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Chá/química , Animais , Antioxidantes/farmacologia , Catequina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Masculino , Neostriado/efeitos dos fármacos , Neostriado/efeitos da radiação , Ratos , Ratos Wistar
7.
Neurochem Res ; 38(5): 906-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23389664

RESUMO

Brain cooling has pronounced effects on seizures and epileptic activity. The aim of the present study is to evaluate the anticonvulsant effect of brain cooling on the oxidative stress and changes in Na(+), K(+)-ATPase and acetylcholinesterase (AchE) activities during status epilepticus induced by pilocarpine in the hippocampus of adult male rat in comparison with α-lipoic acid. Rats were divided into four groups: control, rats treated with pilocarpine for induction of status epilepticus, rats treated for 3 consecutive days with α-lipoic acid before pilocarpine and rats subjected to whole body cooling for 30 min before pilocarpine. The present findings indicated that pilocarine-induced status epilepticus was accompanied by a state of oxidative stress as clear from the significant increase in lipid peroxidation (MDA) and superoxide dismutase (SOD) and significant decrease in reduced glutathione and nitric oxide (NO) levels and the activities of catalase, AchE and Na(+), K(+)-ATPase. Pretreatment with α-lipoic acid ameliorated the state of oxidative stress and restored AchE to nearly control activity. However, Na(+), K(+)-ATPase activity showed a significant decrease. Rats exposed to cooling for 30 min before the induction of status epilepticus revealed significant increases in MDA and NO levels and SOD activity. AchE returned to control value while the significant decrease in Na(+), K(+)-ATPase persisted. The present data suggest that cooling may have an anticonvulsant effect which may be mediated by the elevated NO level. However, brain cooling may have drastic unwanted insults such as oxidative stress and the decrease in Na(+), K(+)-ATPase activity.


Assuntos
Anticonvulsivantes/farmacologia , Temperatura Baixa , Ácido Tióctico/farmacologia , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...