Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(3): 3173-3182, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023863

RESUMO

A gradual dementia, which leads to the loss of memory and intellectual abilities, is the main characteristics of Alzheimer's disease. Amyloid-ß (Aß) plaques are the main components that accumulate and form clumps in the brains of people suffering from Alzheimer's disease. Apolipoprotein E (APOE), an amyloid-binding protein is considered as one of the main genetic risk factor of the late-onset Alzheimer's disease. Different isoforms of APOE gene named APOE2, APOE3, and APOE4 are known to exist, which differ from each other at certain positions involving single-nucleotide polymorphisms (SNPs). Out of these isoforms, APOE4 increases the risk of developing late-onset Alzheimer's disease, whereas APOE3 is the most common among the general population. APOE4 differs from the common APOE3 by only one nucleotide at position +2985 (T to C), which results in immense alteration in the structure and function of the APOE gene. A combination of gel electrophoresis (polyacrylamide gel electrophoresis, PAGE), circular dichroism (CD), CD melting, thermal difference spectra and UV-thermal denaturation (TM) techniques was used to investigate the structural polymorphism associated with T → C single-nucleotide polymorphism (SNP) at the GC-rich sequence (d-TGGAGGACGTGTGCGGCCGCCT; APOE22T). Herein, we report that APOE22T DNA sequence switches between hairpin to antiparallel quadruplex from low to high oligomer concentration. On the contrary, its C-counterpart (APOE22C) forms hairpin as well as intermolecular antiparallel duplex structure. This structural change may possibly contribute to the protein recognition pattern, which, in turn, might control the APOE gene expression.

2.
Biopolymers ; 109(5): e23115, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29672834

RESUMO

An exceptional property of auto-folding into a range of intra- as well as intermolecular quadruplexes by guanine-rich oligomers (GROs) of promoters, telomeres and various other genomic locations is still one of the most attractive areas of research at present times. The main reason for this attention is due to their established in vivo existence and biological relevance. Herein, the structural status of a 20-nt long G-rich sequence with two G5 stretches (SG20) is investigated using various biophysical and biochemical techniques. Bioinformatics analysis suggested the presence of a 17-nt stretch of this SG20 sequence in the intronic region of human SYTX (Synaptotagmin 10) gene. The SYTX gene helps in sensing out the Ca2+ ion, causing its intake in the pre-synaptic neuron. A range of various topologies like bimolecular, tetramolecular and guanine-wires (nano-wires) was exhibited by the studied sequence, as a function of cations (Na+ /K+ ) concentration. UV-thermal denaturation, gel electrophoresis, and circular dichroism (CD) spectroscopy showed correlations and established a cation-dependent structural switch. The G-wire formation, in the presence of K+ , may further be explored for its possible relevance in nano-biotechnological applications.


Assuntos
Cálcio/química , Quadruplex G , Potássio/química , Sódio/química , Sinaptotagminas/química , Sequência de Bases , Cátions Bivalentes , Cátions Monovalentes , Biologia Computacional , Expressão Gênica , Guanina/química , Humanos , Oligonucleotídeos/química , Sinaptotagminas/genética
3.
Int J Biol Macromol ; 111: 455-461, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29329816

RESUMO

Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5'-TCCCCCAATTAATTCCCCCA-3'; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors.


Assuntos
Técnicas Biossensoriais , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA/química , Dicroísmo Circular , Citosina/química , Testes Genéticos , Humanos , Concentração de Íons de Hidrogênio , Polimorfismo Conformacional de Fita Simples/genética , RNA/genética
4.
Curr Top Med Chem ; 17(2): 138-147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27237329

RESUMO

Structural polymorphism is an extremely significant phenomenon of nucleic acids, in which DNA and RNA oligonucleotide sequences are able to adapt various canonical, alternative and multistranded structures. These alternative forms of DNA and RNA have an enormous potential of participating in various cellular processes by recognizing ligands such as proteins, drugs and metal ions in a sequence and structure-specific manner. Such DNA-ligand interactions prove to be highly beneficial when exploited for therapeutic purposes. Many of these DNA/ RNA structures recognizing drugs have already proved their potential as anticancer, antibacterial, anthelmintic and antiviral properties. Over the last 2-3 decades, many mechanisms of DNA-drug interactions have been documented, but still many other new mechanisms are being explored. Designing new drugs with improved efficacy and specificity is of prime concern for all researchers which not only deals with the experiments related to synthesizing drugs, but also takes care of searching novel routes or agents for administration or delivery of these therapeutic agents by increasing their nuclear and cellular uptake. This review aims at explaining the structural polymorphs/ multistranded DNA structures and their interactions with pharmaceutical drugs in a structure-specific manner, along with their modes of interactions and biological relevance. This detailed overview of multistranded DNA structures and interacting drugs might further facilitate our understanding about molecular targets and drug development in a more precise manner for the larger benefit of mankind.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Humanos , Ligantes
5.
Biochem Biophys Rep ; 5: 388-395, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28955846

RESUMO

Structural polymorphism of DNA has constantly been evolving from the time of illustration of the double helical model of DNA by Watson and Crick. A variety of non-canonical DNA structures have constantly been documented across the globe. DNA attracted worldwide attention as a carrier of genetic information. In addition to the classical Watson-Crick duplex, DNA can actually adopt diverse structures during its active participation in cellular processes like replication, transcription, recombination and repair. Structures like hairpin, cruciform, triplex, G-triplex, quadruplex, i-motif and other alternative non-canonical DNA structures have been studied at length and have also shown their in vivo occurrence. This review mainly focuses on non-canonical structures adopted by DNA oligonucleotides which have certain prerequisites for their formation in terms of sequence, its length, number and orientation of strands along with varied solution conditions. This conformational polymorphism of DNA might be the basis of different functional properties of a specific set of DNA sequences, further giving some insights for various extremely complicated biological phenomena. Many of these structures have already shown their linkages with diseases like cancer and genetic disorders, hence making them an extremely striking target for structure-specific drug designing and therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...