Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12264, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806587

RESUMO

This article explores the structural properties of eleven distinct chemical graphs that represent sulfonamide drugs using topological indices by developing python algorithm. To find significant relationships between the topological characteristics of these networks and the characteristics of the associated sulfonamide drugs. We use quantitative structure-property relationship (QSPR) approaches. In order to model and forecast these correlations and provide insights into the structure-activity relationships that are essential for drug design and optimization, linear regression is a vital tool. A thorough framework for comprehending the molecular characteristics and behavior of sulfonamide drugs is provided by the combination of topological indices, graph theory and statistical models which advances the field of pharmaceutical research and development.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Sulfonamidas , Sulfonamidas/química , Modelos Teóricos , Desenho de Fármacos
2.
Sci Rep ; 13(1): 15159, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704710

RESUMO

Chemical graph theory is a well-established discipline within chemistry that employs discrete mathematics to represent the physical and biological characteristics of chemical substances. In the realm of chemical compounds, graph theory-based topological indices are commonly employed to depict their geometric structure. The main aim of this paper is to investigate the degree-based topological indices of dominating David derived networks (DDDN) and assess their effectiveness. DDDNs are widely used in analyzing the structural and functional characteristics of complex networks in various fields such as biology, social sciences, and computer science. We considered the FN*, [Formula: see text], and [Formula: see text] topological indices for DDDNs. Our computations' findings provide a clear understanding of the topology of networks that have received limited study. These computed indices exhibit a high level of accuracy when applied to the investigation of QSPRs and QSARs, as they demonstrate the strongest correlation with the acentric factor and entropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...