Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; 41(10): 1584-1593, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37154233

RESUMO

Heterogeneous combinations of organic compounds (humic acid (HA) and fulvic acid) are the prime factor for the high concentration of colour and chemical oxygen demand (COD) in semi-aerobic stabilized landfill leachate. These organics are less biodegradable and cause a severe threat to environmental elements. Microfiltration and centrifugation processes were applied in this study to investigate the HA removal from stabilized leachate samples and its corresponding interference with COD and colour. The three-stage extraction process recovered a maximum of 1412 ± 2.5 mg/L (Pulau Burung landfill site (PBLS) leachate), 1510 ± 1.5 mg/L (Alor Pongsu landfill site (APLS leachate) at pH 1.5 and 1371 ± 2.5 mg/L (PBLS) and 1451 ± 1.5 mg/L (APLS) of HA (about 42% of the total COD concentration) at pH 2.5, which eventually indicates the process efficiency. Comparative characteristics analysis of recovered HA by scanning electron microscopy, energy-dispersive X-ray, X-ray photoelectron spectroscopy, and Fourier transform infrared significantly indicate the existence of identical elements in the recovered HA compared with the previous studies. The higher reduction (around 37%) in ultraviolet (UV) absorbance values (UV254 and UV280) in the final effluent indicates the elimination of aromaticity and conjugated double-bond compounds from leachate. Moreover, 36 and 39% COD and 39 and 44% colour removal exhibit substantial interference.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Análise da Demanda Biológica de Oxigênio , Cor , Poluentes Químicos da Água/análise
2.
J Air Waste Manag Assoc ; 72(1): 116-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872123

RESUMO

A massive quantity of Elaeis guineensis (oil palm) trunk biomass, containing a significant amount of natural starch, is available in Malaysia as biowaste because of annual replantation. The efficient extraction of this starch (carbohydrate polymer) would be worthwhile concerning the environmental sustainability and economy through conversion to bioresources. This study investigated the effectiveness of the bisulfite steeping method for starch synthesis from oil palm trunk (OPT) biowaste. The central composite design (CCD) of Design-Expert software executed an experimental model design, data analysis, evaluated the impacts of process variables and their interaction through response surface methodology to optimize the bisulfite steeping method for starch synthesis. The developed quadratic models for four factors (strength of sodium bisulfite solution, steeping hour, mixing ratio with the bisulfite solution, and ultrapure water) and one response (%Yield) demonstrated that a significant starch yield (13.54%) is achievable employing 0.74% bisulfite solution, 5.6 steeping hours, for 1.6 and 0.6 mixing ratio with the bisulfite solution and ultrapure water respectively. Experimental outcomes were consistent with the predicted model, which eventually sustains the significance of this method. Malvern Zetasizer test revealed a bimodal granular distribution for starch, with 7.15 µm of hydrodynamic size. Starch morphology was determined by scanning electron microscopy. X-ray diffraction investigation exhibits an A-type model, specifying persistent characteristics, while FTIR confirms the presence of hydroxyl, carboxylic, and phenolic groups like other cereal starches.Implications: Malaysia is the 2nd largest palm oil exporter in the world. About 110 million tons of palm oil trunk (OPT) biomass is available annually during replanting activities. Modification of bio-wastes into a beneficial form (only 22% presently) like starch extraction would ensure potential reuse as a natural coagulant for wastewater and leachate treatment, food source, adhesives towards boosting the country's economy by sustainable waste management. The current study achieved better starch yield (13.54%) than previous, from the OPT biomass through the novel bisulfite steeping method. Therefore, this method will ascertain the effective implication of numerous economic activities.


Assuntos
Arecaceae , Amido , Biomassa , Óleo de Palmeira , Sulfitos
3.
Waste Manag Res ; 39(11): 1396-1405, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33928820

RESUMO

The removal of concentrated colour (around 5039 Pt-Co) and chemical oxygen demand (COD; around 4142 mg L-1) from matured landfill leachate through a novel combination of humic acid extraction and coagulation with natural oil palm trunk starch (OPTS) was investigated in this study. Central composite design from response surface methodology of Design Expert-10 software executed the experimental design to correlate experimental factors with desired responses. Analysis of variance developed the quadratic model for four factors (e.g. coagulant dosage, slow mixing speed and time and centrifugation duration) and two responses (% removal of colour, COD). The model confirmed the highest colour (84.96%) and COD (48.84%) removal with a desirability function of 0.836 at the optimum condition of 1.68 g L-1 coagulant dose, 19.11 rpm slow mixing speed, 16.43 minutes for mixing time and 35.75 minutes for centrifugation duration. Better results of correlation coefficient (R2 = 0.98 and 0.96) and predicted R2 (0.94 and 0.84) indicates the model significance. Electron microscopic images display the amalgamation of flocs through bridging. Fourier transforms infrared spectra confirmed the existence of selected organic groups in OPTS, which eventually signifies the applied method.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Cor , Amido , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...