Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 55(1): 40, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572914

RESUMO

BACKGROUND: Cartilaginous disorders comprise a wide range of diseases that affect normal joint movement, ear and nose shape; and they have great social and economic impact. Mesenchymal stem cells (MSCs) provide a promising regeneration alternative for treatment of degenerative cartilaginous disorders. This study aimed to compare therapeutic potential of different types of laser activated MSCs to promote auricular cartilage regeneration. Twelve adult rabbit allocated equally in four groups, all animals received a surgical mid auricular cartilage defect in one ear; Group I (Positive control) injected sub-perichondrially with phosphate-buffered saline (PBS), Group II (ADMSC-transplanted group) injected adipose-derived MSCs (ADMSCs), Group III (BMMSCs-transplanted group) received bone marrow-derived MSCs (BMMSCs), and Group IV (EMSC-transplanted group) received ear MSCs (EMSCs) in the defected ear. The auricular defect was analyzed morphologically, histopathologically and immunohistochemically after 4 weeks. In addition, a quantitative real-time polymerase chain reaction was used to examine expression of the collagen type II (Col II) and aggrecan as cartilage growth factors. RESULTS: The auricles of all treatments appeared completely healed with smooth surfaces and similar tissue color. Histopathologically, defective areas of control positive group, ADMSCs and EMSCs treated groups experienced a small area of immature cartilage. While BMMSCs treated group exhibited typical features of new cartilage formation with mature chondrocytes inside their lacunae and dense extracellular matrix (ECM). In addition, BMMSC treated group showed a positive reaction to Masson's trichrome and orcein stains. In contrary, control positive, ADMSC and EMSC groups revealed faint staining with Masson's trichrome and Orcein. Immunohistochemically, there was an intense positive S100 expression in BMMSCs (with a significant increase of area percentage + 21.89 (P < 0.05), a moderate reaction in EMSCs (with an area percentage + 17.97, and a mild reaction in the control group and ADMSCs (area percentages + 8.02 and + 11.37, respectively). The expression of relative col II and aggrecan was substantially highest in BMMSCs (± 0.91 and ± 0.89, respectively). While, Control positive, ADMSCs and EMSCs groups recorded (± 0.41: ± 0.21, ± 0.6: ± 0.44, ± 0.61: ± 0.63) respectively. CONCLUSION: BMMSCs showed the highest chondrogenic potential compared to ADMSCs and EMSCs and should be considered the first choice in treatment of cartilaginous degenerative disorders.


Assuntos
Cartilagem da Orelha , Células-Tronco Mesenquimais , Animais , Coelhos , Agrecanas/metabolismo , Condrócitos , Matriz Extracelular , Células Cultivadas , Diferenciação Celular
2.
Environ Toxicol Pharmacol ; 94: 103911, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724857

RESUMO

Plastic products are widely used in different applications. Thus, exposure of human and other organisms to these products may affect their biological system. The current study was conducted to investigate the potential deleterious effect of Polysterene nanoparticles (PS-NPs) on the liver and to state the cellular and molecular mechanisms associated with exposure to PS-NPs.30 male rats were divided randomly and equally into 3 groups; control (distilled water), low dose (3 mg/kg/day) and high dose (10 mg/kg/day) exposed group via oral gavage for 5 successive weeks. PS-NPs caused elevation in ALT, AST and MDA, upregulation of apoptosis-related genes and significant decrease in GSH and mRNA expression for antioxidant-related genes (Nrf-2 and GPx). Moreover, alterations in hepatic tissue architecture and positive caspase-3 expression was noticed in a dose- dependent manner. Collectively, PS-NPs can induce hepatoxicity in rats in a dose dependent manner, so the health risk of PS-NPs should not be ignored.


Assuntos
Hepatopatias , Nanopartículas , Animais , Apoptose , Hepatócitos/metabolismo , Humanos , Fígado , Hepatopatias/metabolismo , Masculino , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/toxicidade , Ratos
3.
Environ Sci Pollut Res Int ; 29(55): 83797-83809, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35771327

RESUMO

Atrazine (ATZ) is a widely used herbicide; however, it has deleterious effects. The current study aimed to investigate the potential toxic effect of ATZ as a neuroendocrine disruptor on the cerebellum and thyroid gland and on the liver as a detoxifying organ. We examined the ability of ATZ to induce oxidative stress and subsequent apoptosis in these organs. Moreover, we investigated the potential protective effect of Acacia nilotica, because of its potent antioxidant activity. Thus, our study was carried out on 40 adult male albino rats that were divided equally into 4 groups (10 rats/each group). The first group received distilled water, while the second group received ATZ dissolved in corn oil at 200 mg/kg body weight/day by stomach gavage. The third group was treated orally by ATZ (200 mg/kg body weight/day) plus Acacia nilotica (400 mg/kg/day). Group IV received Acacia nilotica only at a dose (400 mg/kg/day). After successive 30 days of the experiment, blood and tissue samples were collected from all groups. Our findings revealed the ability of ATZ to induce toxic effects was observed microscopically in the form of degenerated neurons and vacuolated neuropil of the cerebellum, degenerated hepatocytes, and vacuolation of the follicular cells of the thyroid gland. Furthermore, ATZ significantly elevated AST, ALT, and ALP serum levels and TB concentration, while decreased GSH. DNA fragmentation% and activated caspase-3 expression significantly increased after ATZ exposure. Interestingly, Acacia nilotica administration was able to partially protect the examined organs against the toxic effect of ATZ exposure.


Assuntos
Acacia , Atrazina , Ratos , Animais , Acacia/química , Atrazina/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Peso Corporal
4.
Environ Sci Pollut Res Int ; 29(20): 30697-30711, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34994930

RESUMO

Atrazine (ATZ) is herbicide that has been widely used for different crops. This extensive use has resulted in severe deleterious effects in different species. In this work, we investigated the potentially harmful effect of atrazine herbicide on the brain and submandibular salivary gland. Our investigation was carried out on 20 adult male albino rats that were equally divided into two groups. The first group received distilled water as control, while the second group received ATZ at 200 mg/kg body weight/ day via stomach gavage for 30 successive days of the experiment; the oral LD50 for ATZ is 3090 mg/kg. Our findings revealed the ability of ATZ to cause damage to the cerebrum, hippocampus, and submandibular salivary gland. This damage resulted from the induced oxidative stress, which was indicated by a significant elevation in malondialdehyde (MDA) concentration, DNA fragmentation, tumor necrotic factor-alpha (TNF-α) expression, with a significant decrease in reduced glutathione (GSH) level and reduction of B cell lymphoma 2 (BCL2), dopamine receptor D1 (Drd1), cAMP-responsive element-binding protein 1 (Creb1) genes expression after ATZ exposure. Moreover, degeneration of cells, cytoplasmic vacuolation, congestion of blood vessels, a strong immune reaction to caspase 3, and negligible immune expression of a glial fibrillary acidic protein (GFAP) were also noticed in the ATZ-treated group. We concluded that ATZ induces oxidative stress and has a toxic and apoptotic effects on the cerebrum, hippocampus, and salivary gland of adult male albino rats.


Assuntos
Atrazina , Herbicidas , Animais , Atrazina/toxicidade , Encéfalo/metabolismo , Herbicidas/toxicidade , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos
5.
Environ Sci Pollut Res Int ; 29(1): 936-948, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34345985

RESUMO

Fipronil (FIP) is a highly effective insecticide that has been used in agriculture and veterinary medicine. Its neurotoxic effect to insects and to non-target organisms, after nonintentional exposure, was reported. Many studies were conducted to evaluate FIP effects on mammals. However, slight is known about its effect on the brain stem and diencephalon. The current study was designed to investigate the ability of FIP to induce oxidative stress as a molecular mechanism of FIP neurotoxicity that resulted in apoptosis and neural tissue reactivity in these regions. Ten adult male rats received 10 mg/kg of FIP technical grade by oral gavage, daily for 45 days. Brain stem and diencephalon were processed to examine oxidative stress-induced macromolecular alteration (MDA, PCC and DNA fragmentation). Also, the histopathological assessment and immunoreactivity for caspase-3 (active form), iNOS and GFAP were performed on the thalamus, hypothalamus and medulla oblongata. Our results revealed that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). In addition, significantly increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in the FIP-treated group was noticed (p ≤ 0.05). Moreover, alterations in the histoarchitecture of the neural tissue of these regions were observed. We conclude that FIP can induce oxidative stress, leading to apoptosis and tissue reaction in brain stem and diencephalon.


Assuntos
Apoptose , Tronco Encefálico/patologia , Diencéfalo/patologia , Estresse Oxidativo , Pirazóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Diencéfalo/efeitos dos fármacos , Inseticidas/toxicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
6.
Int J Biol Macromol ; 191: 792-802, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34597692

RESUMO

Melamine and its analogues are illegally added to raise the apparent protein content in foods. The elevated concentrations of these compounds cause adverse effects in humans and animals. In this contribution, the protective effects of the synthesized starch-stabilized selenium nanoparticles (Se-NPs@starch) on melamine-induced hepato-renal toxicity have been systematically investigated. The Se-NPs@starch were characterized by X-ray photoelectron spectroscopy (XPS) analysis, energy dispersive spectroscopy (EDS) mapping analysis, TEM, and FT-IR. Starch plays a crucial role in the stabilization and dispersion of Se NPs, as noticed from the TEM and EDS investigations. Furthermore, the atomic ratio of Se distribution over the starch surface is approximately 1.67%. The current study was conducted on four groups of adult male rats, and the oral daily treatments for 28 days were as follows: group I served as control, group II received Se-NPs@starch, group III was exposed to melamine, while group IV was treated with melamine and Se-NPs@starch. The results reveal a significant alteration in the histoarchitecture of both hepatic and renal tissues induced by melamine. Furthermore, elevated liver and kidney function markers, high malondialdehyde, and increased expression levels of apoptosis-related genes besides a reduction in GSH and expression levels of antioxidant genes were observed in the melamine-exposed group. Interestingly, the administration of the Se-NPs@starch resulted in remarkable protection of rats against melamine-induced toxicity through increasing the antioxidant capacity and inhibiting oxidative damage. Collectively, this study provides affordable starch-stabilized Se-NPs with potent biological activity, making them auspicious candidates for prospective biomedical applications.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Nanopartículas/química , Selênio/química , Amido/química , Triazinas/toxicidade , Animais , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nanopartículas/uso terapêutico , Estresse Oxidativo , Ratos
7.
Acta Histochem ; 123(6): 151764, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34352653

RESUMO

Fipronil (FIP) insecticide is extensively used in agriculture, public health and veterinary medicine. Although it is considered as a neurotoxin to insects (target organisms) and exhibits neurological signs upon vertebrates (non-target organisms) exposure, slight is known about its potential neurotoxic effects and its molecular mechanisms on vertebrates. The current study is designed to assess oxidative stress as a molecular mechanism of FIP neurotoxicity subordinated with apoptosis and neural tissue reactivity. Ten adult male albino rats received 10 mg/kg body weight fipronil technical grade by oral gavage daily for 45 days (subacute exposure). Brain neural tissue regions (hippocampus, cerebellum and caudate putamen) were processed to examine oxidative stress induced cellular macromolecular alterations as MDA, PCC and DNA fragmentation. Besides, TNF-α and Bcl-2 gene expression and immunoreactivity for caspase-3 (active form), iNOS and GFAP were evaluated. Also, histopathological assessment was conducted. We found that FIP significantly raised MDA, PCC and DNA fragmentation (p ≤ 0.05). Also, it significantly upregulated TNF-α and non-significantly down-regulated Bcl-2 gene expression (p ≤ 0.05). Further, significant increased immunoreactivity to GFAP, iNOS and caspase-3 (active form) in these brain neural tissue regions in FIP treated group was noticed (p ≤ 0.05). Histopathological findings, including alterations in the histological architecture and neuronal degeneration, were also observed in these brain regions of FIP treated group. In conclusion, we suggest the ability of FIP to induce oxidative stress mediated macromolecular alterations, leading to apoptosis and tissue reaction in these brain regions which showed variable susceptibility to FIP toxic effects.


Assuntos
Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/efeitos adversos , Animais , Caspase 3/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/biossíntese , Masculino , Tecido Nervoso/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pirazóis/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/biossíntese
8.
Recent Pat Anticancer Drug Discov ; 16(2): 161-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34132186

RESUMO

BACKGROUND: Over recent years, there has been an increasing focus on the repurposing of existing, well-known medications for new, novel usage. One such drug is metformin, typically utilized in the management of diabetes, which demonstrates a positive relationship between its administration and lower cancer morbidity and mortality. Based on this finding, numerous studies and clinical trials have been conducted to examine the potential usage of metformin as an anticancer agent. OBJECTIVE: This article aims to summarize metformin's anticancer effects through reviewing its literatures and patents, with a focus on its potential to be repurposed for cancer therapy. METHODS: Various databases were examined using keywords, 'Metformin' and 'Cancer'. Research articles were collected through the PubMed database, clinical trials were obtained from the Clinical Trials database, and patents were collected through the Google Patents database. RESULTS: Metformin shows antineoplastic activity in various models. These anticancer properties appear to synergize with existing chemotherapeutics, which allows a reduction in drug dosage without losing potency while minimizing adverse effects. Numerous patents on metformin have been filed which claim various combination therapies, delivery methods, and uses for cancer therapy, displaying an increasing interest in metformin's anticancer potential. CONCLUSION: Preclinical studies, along with early phase clinical trials, have examined the antitumor properties of metformin on a variety of cancers. Metformin's anticancer effects are well documented, demonstrating a great promise in improving current cancer therapies. However, there is a significant lack of late phase clinical trials, specifically those involving nondiabetic cancer patients, and therefore further research in this area is required.


Assuntos
Antineoplásicos/farmacologia , Metformina/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Humanos , Hipoglicemiantes/farmacologia , Metformina/administração & dosagem , Metformina/efeitos adversos , Patentes como Assunto
9.
Acta Histochem ; 123(2): 151682, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33465564

RESUMO

Methotrexate (MTX) has been used for treatment of autoimmune diseases, inflammatory disorders as rheumatic arthritis, and different types of cancers. However, it has shown adverse effects on vital organs. The current study was conducted to investigate the toxic effect of MTX on the hippocampus, cerebellum, liver and kidneys of adult male albino rats. MTX was injected weekly at 5 mg/kg body weight via I/P injection for 6 weeks. At the end of the experiment, histopathological, immunohistochemical and biochemical evaluation were performed on the hippocampus, cerebellum, liver, and kidney tissues of the sacrificed rats. We observed that methotrexate induced neural tissue damage in the hippocampus and cerebellum, degeneration of hepatocytes, congestion of the central vein and blood sinusoids of the liver, distortion in the renal corpuscles and necrosis of the renal tubule. Immunohistochemical findings revealed strong positive expression of Caspase-3, PCNA and GFAP. Biochemical studies revealed significant elevation in the serum levels of AST and ALT, in addition to high serum concentrations of creatinine and urea. Also, MTX injection increased MDA, while it decreased GSH, SOD and AChE levels. We conclude the ability of MTX to induce oxidative stress that results into apoptosis and tissue injury, leading to neurotoxicity, hepatotoxicity, and nephrotoxicity.


Assuntos
Cerebelo/metabolismo , Hipocampo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Metotrexato/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Técnicas In Vitro , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
10.
Curr Cancer Drug Targets ; 20(6): 392-409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101123

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Most lung cancer patients are diagnosed at advanced stages and may benefit from pembrolizumab (anti-PD-1 antibody), cytotoxic chemotherapy and other adjuvant therapies. Despite the availability of various therapies, the response and survival rates have been low. Therefore, the study of different targets for the treatment of lung cancer has been one of the major focuses of cancer research. The ubiquitin proteasome system (UPS) is a crucial regulator of cell homeostasis and plays an essential role in the growth and development of all cells. The UPS is dysregulated in human cancer cells including lung cancer cells. Therefore, targeting UPS is potentially a selective, effective treatment for lung cancer. Bortezomib, a 20S proteasome inhibitor that is clinically approved for the management of multiple myeloma, has been studied in various preclinical and clinical models of lung cancer. Most preclinical studies have shown that a 20S proteasome inhibitor alone and its combination with other chemotherapeutic agents induce apoptosis in non-small cell lung cancer cell lines and animal models. Owing to the impressive preclinical results, many clinical trials were initiated using 20S proteasome inhibitors either as monotherapy or in combination with other conventional lung cancer therapies. Many combinational therapies of 20S PIs with conventional chemotherapy were shown to be well tolerated in clinical trials. However, there have not been any consistent data showing the beneficial effects of such proteasome inhibitor-based therapies. Low clinical efficacy of 20S PIs in lung cancer patients may be due to low drug penetration, the status of 20S proteasomes, oncogene expressions and the inherited or acquired resistance. Potential mechanisms of PI resistance or low or no clinical activity in lung cancer cells might include alteration of apoptotic proteins, overexpression or alteration of ß5 subunit, or upregulation of heat shock proteins. Various cutting-edge strategies to counter this resistance or improve 20S PIs' efficacy in lung cancer cells have been reviewed which include novel combination therapies, new drug delivery systems, development of more potent PIs, and targeting different sites of the UPS. A better understanding of PI resistance mechanisms in lung cancer cells can help improve current clinical treatment strategies and clinical outcomes.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Animais , Humanos
11.
J Cell Biochem ; 119(11): 9006-9016, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30015387

RESUMO

Isothiocyanates (ITCs) are natural chemoprotective products found abundantly in cruciferous vegetables. However, the cancer-relevant targets and molecular mechanisms of ITCs remain unclear. We hypothesize that ITCs, as electrophiles, can interact with the catalytic triads (CYS, HIS, and ASP) of the proteasomal cysteine deubiquitinases USP14 and UCHL5, ultimately inhibiting their activities. In the current study, we exploited this possibility by performing both computational docking and biochemical validation assays using human breast and prostate cancer cell models. Docking results suggest that benzyl isothiocyanate, phenethyl isothiocyanate, and DL-sulforaphane are more potent inhibitors of UCHL5 than USP14, and these ITCs could interact with the catalytic triads of UCHL5 and USP14. Indeed, ubiquitin vinyl sulfone assay confirmed the inhibitory activity of each ITC on the ubiquitin-binding activity of UCHL5 and USP14. We also found that inhibition of USP-14 and UCHL5 activities by the ITCs caused increased levels of USP14 and UCHL5 proteins, but not the third 19S-deubiquitinating enzyme (DUB), POH1/RPN11, suggesting feedback loop activation and further supporting that ITCs are inhibitors of proteasomal cysteine DUBs. Associated with DUB inhibition by ITCs, ubiquitinated proteins were significantly increased, accompanied with induction of apoptosis, inhibition of proliferation and suppression of cell invasion. Our findings of ITCs as proteasomal cysteine DUB inhibitors should provide insightful information for designing, discovering and developing potent, specific 19S-DUB inhibitors for cancer therapies.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Isotiocianatos/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Humanos , Masculino , Transativadores/metabolismo , Ubiquitina Tiolesterase/metabolismo
12.
Recent Pat Anticancer Drug Discov ; 12(3): 190-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28637419

RESUMO

BACKGROUND: Alteration of cellular metabolism is a hallmark of cancer, which underlies exciting opportunities to develop effective, anti-cancer therapeutics through inhibition of cancer metabolism. Nicotinamide Adenine Dinucleotide (NAD+), an essential coenzyme of energy metabolism and a signaling molecule linking cellular energy status to a spectrum of molecular regulation, has been shown to be in high demand in a variety of cancer cells. Depletion of NAD+ by inhibition of its key biosynthetic enzymes has become an attractive strategy to target cancer. OBJECTIVE AND METHOD: The main objective of this article is to review the recent patents which develop and implicate the chemical inhibitors of the key NAD+ biosynthetic enzymes for cancer treatment. We first discuss the biological principles of NAD+ metabolism in normal and malignant cells, with a focus on the feasibility of selectively targeting cancer cells by pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT) and indoleamine/tryptophan 2,3-dioxygenases (IDO/TDO), the rate-limiting salvage and de novo NAD+ biosynthetic enzymes, respectively. We then analyze a series of recent patents on development and optimization of chemical scaffolds for inhibiting NAMPT or IDO/TDO enzymes as potential anticancer drugs. Conclusion and Results: We have reviewed 16 relevant patents published since 2015, and summarized the chemical properties, mechanisms of action and proposed applications of the patented compounds. Without a better understanding of the properties of these compounds, their utility for further optimization and clinical use is unknown. For the compounds that have been tested using cell and mouse models of cancer, results look promising and clinical trials are currently ongoing to see if these results translate to improved cancer treatments.


Assuntos
Antineoplásicos/farmacologia , NAD/biossíntese , Neoplasias/tratamento farmacológico , Animais , Desenho de Fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Camundongos , Terapia de Alvo Molecular , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Patentes como Assunto , Triptofano Oxigenase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...