Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6017, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758705

RESUMO

With the increasing pressure to decarbonize our society, green hydrogen has been identified as a key element in a future fossil fuel-free energy infrastructure. Solar water splitting through photoelectrochemical approaches is an elegant way to produce green hydrogen, but for low-value products like hydrogen, photoelectrochemical production pathways are difficult to be made economically competitive. A possible solution is to co-produce value-added chemicals. Here, we propose and demonstrate the in situ use of (photo)electrochemically generated H2 for the homogeneous hydrogenation of itaconic acid-a biomass-derived feedstock-to methyl succinic acid. Coupling these two processes offers major advantages in terms of stability and reaction flexibility compared to direct electrochemical hydrogenation, while minimizing the overpotential. An overall conversion of up to ~60% of the produced hydrogen is demonstrated for our coupled process, and a techno-economic assessment of our proposed device further reveals the benefit of coupling solar hydrogen production to a chemical transformation.

2.
ACS Catal ; 12(24): 15576-15589, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36590316

RESUMO

To address the challenge of selectivity toward single products in Cu-catalyzed electrochemical CO2 reduction, one strategy is to incorporate a second metal with the goal of tuning catalytic activity via synergy effects. In particular, catalysts based on Cu modified with post-transition metals (Sn or In) are known to reduce CO2 selectively to either CO or HCOO- depending on their composition. However, it remains unclear exactly which factors induce this switch in reaction pathways and whether these two related bimetal combinations follow similar general structure-activity trends. To investigate these questions systematically, Cu-In and Cu-Sn bimetallic catalysts were synthesized across a range of composition ratios and studied in detail. Compositional and morphological control was achieved via a simple electrochemical synthesis approach. A combination of operando and quasi-in situ spectroscopic techniques, including X-ray photoelectron, X-ray absorption, and Raman spectroscopy, was used to observe the dynamic behaviors of the catalysts' surface structure, composition, speciation, and local environment during CO2 electrolysis. The two systems exhibited similar selectivity dependency on their surface composition. Cu-rich catalysts produce mainly CO, while Cu-poor catalysts were found to mainly produce HCOO-. Despite these similarities, the speciation of Sn and In at the surface differed from each other and was found to be strongly dependent on the applied potential and the catalyst composition. For Cu-rich compositions optimized for CO production (Cu85In15 and Cu85Sn15), indium was present predominantly in the reduced metallic form (In0), whereas tin mainly existed as an oxidized species (Sn2/4+). Meanwhile, for the HCOO--selective compositions (Cu25In75 and Cu40Sn60), the indium exclusively exhibited In0 regardless of the applied potential, while the tin was reduced to metallic (Sn0) only at the most negative applied potential, which corresponds to the best HCOO- selectivity. Furthermore, while Cu40Sn60 enhances HCOO- selectivity by inhibiting H2 evolution, Cu25In75 improves the HCOO- selectivity at the expense of CO production. Due to these differences, we contend that identical mechanisms cannot be used to explain the behavior of these two bimetallic systems (Cu-In and Cu-Sn). Operando surface-enhanced Raman spectroscopy measurements provide direct evidence of the local alkalization and its impact on the dynamic transformation of oxidized Cu surface species (Cu2O/CuO) into a mixture of Cu(OH)2 and basic Cu carbonates [Cux(OH)y(CO3)y] rather than metallic Cu under CO2 electrolysis. This study provides unique insights into the origin of the switch in selectivity between CO and HCOO- pathways at Cu bimetallic catalysts and the nature of surface-active sites and key intermediates for both pathways.

3.
Inorg Chem ; 60(22): 17083-17093, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704441

RESUMO

In an attempt to tailor precursors for application in the deposition of phase pure SnO, we have evaluated a series of tin (1-6) ureide complexes. The complexes were successfully synthesized by employing N,N'-trialkyl-functionalized ureide ligands, in which features such as stability, volatility, and decomposition could be modified with variation of the substituents on the ureide ligand in an attempt to find the complex with the ideal electronic, steric, or coordinative properties, which determine the fate of the final products. The tin(II) ureide complexes 1-6 were synthesized by direct reaction [Sn{NMe2}2] with aryl and alkyl isocyanates in a 1:2 molar ratio. All the complexes were characterized by NMR spectroscopy as well as elemental analysis and, where applicable, thermogravimetric (TG) analysis. The single-crystal X-ray diffraction studies of 2, 3, 4, and 6 revealed that the complexes crystallize in the monoclinic space group P2(1)/n (2 and 4) or in the triclinic space group P-1 (3 and 6) as monomers. Reaction with phenyl isocyanate results in the formation of the bimetallic species 5, which crystallizes in the triclinic space group P-1, a consequence of incomplete insertion into the Sn-NMe2 bonds, versus mesityl isocyanate, which produces a monomeric double insertion product, 6, under the same conditions, indicating a difference in reactivity between phenyl isocyanate and mesityl isocyanate with respect to insertion into Sn-NMe2 bonds. The metal centers in these complexes are all four-coordinate, displaying either distorted trigonal bipyramidal or trigonal bipyramidal geometries. The steric influence of the imido-ligand substituent has a clear effect on the coordination mode of the ureide ligands, with complexes 2 and 6, which contain the cyclohexyl and mesityl ligands, displaying κ2-O,N coordination modes, whereas κ2-N,N' coordination modes are observed for the sterically bulkier tert-butyl and adamantyl derivatives, 3 and 4. The thermogravimetric analysis of the complexes 3 and 4 exhibited excellent physicochemical properties with clean single-step curves and low residual masses in their TG analyses suggesting their potential utility of these systems as MOCVD and ALD precursors.

4.
J Phys Chem Lett ; 12(8): 2148-2153, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625854

RESUMO

The earth-abundant ternary compound BaZrS3, which crystallizes in the perovskite-type structure, has come into view as a promising candidate for photovoltaic applications. We present the synthesis and characterization of polycrystalline perovskite-type BaZrS3 thin films. BaZrO3 precursor layers were deposited by pulsed laser deposition and sulfurized at various temperatures in an argon-diluted H2S atmosphere. We observe increasing incorporation of sulfur for higher annealing temperatures, accompanied by a red shift of the absorption edge, with a bandgap of Eg = 1.99 eV and a large absorption strength >105 cm-1 obtained for sulfurization temperatures of 1000 °C. X-ray diffraction analysis and SEM indicate enhanced crystallization at the higher annealing temperatures, but no evidence for a crystalline solid solution between the BaZrO3 and BaZrS3 phases is found. The charge carrier sum mobility estimated from optical-pump-terahertz-probe spectroscopy indicates increasing mobilities with increasing sulfurization temperature, reaching maximum values of up to ∼2 cm2 V-1 s-1.

5.
ACS Appl Mater Interfaces ; 12(12): 13959-13970, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32096970

RESUMO

We assess a tandem photoelectrochemical cell consisting of a W:BiVO4 photoanode top absorber and a CuBi2O4 photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO4 photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst. However, the CuBi2O4 photocathode does not produce a detectable amount of hydrogen from water reduction even when Pt or RuOx is added as a cocatalyst because the photocurrent primarily goes toward photocorrosion of CuBi2O4 rather than proton reduction. Protecting the CuBi2O4 photocathode with a CdS/TiO2 heterojunction and adding RuOx as a cocatalyst prevents photocorrosion and allows for photoelectrochemical production of hydrogen at potentials ≤0.3 V vs RHE. A tandem photoelectrochemical cell composed of a W:BiVO4/CoPi photoanode and a CuBi2O4/CdS/TiO2/RuOx photocathode produces hydrogen which can be detected under illumination at an applied bias of ≥0.4 V. Since the valence band of BiVO4 and conduction band of CuBi2O4 are adequately positioned to oxidize water and reduce protons, we hypothesize that the applied bias is required to overcome the relatively low photovoltages of the photoelectrodes, that is, the relatively low quasi-Fermi level splitting within BiVO4 and CuBi2O4. This work is the first experimental demonstration of hydrogen production from a BiVO4-CuBi2O4-based tandem cell and it provides important insights into the significance of photovoltage in tandem devices for overall water splitting, especially for cells containing CuBi2O4 photocathodes.

6.
RSC Adv ; 9(26): 14899-14909, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35516305

RESUMO

Six different thin film solar cells consisting of either orthorhombic (α-SnS) or cubic (π-SnS) tin(ii) sulfide absorber layers have been fabricated, characterized and evaluated. Absorber layers of either π-SnS or α-SnS were selectively deposited by temperature controlled Aerosol Assisted Chemical Vapor Deposition (AA-CVD) from a single source precursor. α-SnS and π-SnS layers were grown on molybdenum (Mo), Fluorine-doped Tin Oxide (FTO), and FTO coated with a thin amorphous-TiO x layer (am-TiO x -FTO), which were shown to have significant impact on the growth rate and morphology of the as deposited thin films. Phase pure α-SnS and π-SnS thin films were characterized by X-ray diffraction analysis (XRD) and Raman spectroscopy (514.5 nm). Furthermore, a series of PV devices with an active area of 0.1 cm2 were subsequently fabricated using a CdS buffer layer, intrinsic ZnO (i-ZnO) as an insulator and Indium Tin Oxide (ITO) as a top contact. The highest solar conversion efficiency for the devices consisting of the α-SnS polymorph was achieved with Mo (η = 0.82%) or FTO (η = 0.88%) as the back contacts, with respective open-circuit voltages (V oc) of 0.135 and 0.144 V, and short-circuit current densities (J sc) of 12.96 and 12.78 mA cm-2. For the devices containing the π-SnS polymorph, the highest efficiencies were obtained with the am-TiO x -FTO (η = 0.41%) back contact, with a V oc of 0.135 V, and J sc of 5.40 mA cm-2. We show that mild post-fabrication hot plate annealing can improve the J sc, but can in most cases compromise the V oc. The effect of sequential annealing was monitored by solar conversion efficiency and external quantum efficiency (EQE) measurements.

7.
Chempluschem ; 83(10): 941-946, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31950613

RESUMO

The application of bismuth vanadate (BiVO4 ) photoelectrodes for solar water splitting is hindered by the poor carrier transport. To overcome this, multiple donor-doping strategies (e.g. dual doping, gradient doping) have been explored. Here, we show for the first time the successful introduction of calcium (Ca) as an acceptor-type dopant into BiVO4 photoelectrodes. Interestingly, instead of generating cathodic photocurrents, the Ca-doped BiVO4 photoelectrodes show anodic photocurrents with an enhanced carrier separation efficiency. Hard X-ray photoelectron spectroscopy (HAXPES) shows that this enhancement is caused by out-diffusion of Ca during the deposition process, which spontaneously creates a p-n junction within the BiVO4 layer. Overall, a significant two-fold improvement of the AM1.5 photocurrent is obtained upon Ca-doping. This study highlights the importance of controlled doping beyond simply modifying carrier concentration and may enable new device architectures in photoelectrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...