Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Healthc Mater ; : e2401099, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814677

RESUMO

Endovascular embolization is a promising therapeutic approach broadening its application area due to its minimal invasiveness and short operation time, wherein lesional blood vessels are occluded with liquid embolic agents under X-ray imaging guidance. Histoacryl and its composition with Lipiodol are one of the most widely used liquid embolic agents, however, Histoacryl has critical limitations such as lack of innate X-ray visibility and strong adhesion to microcatheter. In this study, three different iodinated cyanoacrylates are newly synthesized as alternatives to Histoacryl and employed to develop liquid embolic compositions. Among them, 4-iodobutyl 2-cyanoacrylate (IBCA) was most preferable with high iodine content (730 mgI/mL) and fast polymerization. The IBCA-based embolic compositions containing ethyl oleate and acetic acid showed moderate viscosity and reduced catheter adhesiveness (∼ 0.80 N), and their polymerization time was freely controllable from 2 to 15 s. In the embolization test with rabbit models, the renal artery was successfully occluded by IBCA-based embolic compositions without vascular recanalization or non-target embolization for 4 w. Their embolic effect was further evaluated using swine models, demonstrating the practical applicability in the clinic. In conclusion, IBCA and its compositions are determined to have great potential as novel liquid embolic agents. This article is protected by copyright. All rights reserved.

3.
J Funct Biomater ; 15(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38667538

RESUMO

Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the chelation of Cu2+ ions by silanol groups. The integration of Cu2+ ions into uniformly sized silica nanoparticles imparts a photothermal therapy effect. Additionally, the amine functionalization of the silica coating facilitates the chemical conjugation of tumor-specific fluorescence probes. These probes are strategically designed to remain in an 'off' state through the Förster resonance energy transfer mechanism until exposed to cysteine enzymes in cancer cells, inducing the recovery of their fluorescence. Consequently, our Cu2+-loaded silica nanoparticles demonstrate an efficient photothermal therapy effect and selectively enable cancer imaging.

4.
Nanoscale Adv ; 6(5): 1556-1564, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419878

RESUMO

Laser-induced graphene (LIG) is conventionally produced from polyimide among thermosetting polymer substrates, but its flexible nature limits its tremendous potential in applications where flexibility of the substrate is not desired. Interestingly, polybenzoxazine has also been found to have potential as a substrate in LIG production. However, aside from being brittle, it has inferior char residue and thermal stability relative to polyimide, which could result in the production of LIG with inferior properties. Thus, exploring possible improvements in the properties of the polybenzoxazine-based substrate and LIG by alloying with polybenzoxazine and polyimide is the major motivation of this study. First, the improvement in the toughness, char residue and thermal stability of polybenzoxazine by alloying with polyimide was explored. Second, the properties of a LIG obtained from the polybenzoxazine/polyimide alloy were studied. The electrical sheet resistivity, Raman spectra indices, structural morphologies, and crystal size of the neat polybenzoxazine and polybenzoxazine/polyimide alloy substrates were compared. The results reveal significant improvements in the electrical resistivity, structural morphology, and crystal size of the LIG. In addition, the improved polybenzoxazine/polyimide alloy substrate was used to optimize the operational parameters of the laser machine for the production of the LIG. LIG with a minimum electrical sheet resistivity of 3.61 Ω sq-1, multi-layer crystals as confirmed by Raman spectroscopic analysis, and a sponge-like highly porous structure was achieved with the optimum operational conditions in an ambient environment. Last, a quadratic model was found and validated to suitably define the production process. The study demonstrated an improvement in the property of a rigid polybenzoxazine-based LIG by alloying polybenzoxazine with polyimide for the first time.

5.
Biomaterials ; 295: 122038, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36787659

RESUMO

Proteolysis-targeting chimeras (PROTACs) have recently been of great interest in cancer therapy. However, the bioavailability of PROTACs is considerably restricted due to their high hydrophobicity, poor cell permeability, and thereby low tumor targeting ability. Herein, esterase-cleavable maleimide linker (ECMal)-conjugated bromodomain 4 (BRD4)-degrading PROTAC (ECMal-PROTAC) is newly synthesized to exploit plasma albumin as an 'innate drug carrier' that can be accumulated in targeted tumor tissues. The BRD4-degrading ECMal-PROTAC is spontaneously bound to albumins via the thiol-maleimide click chemistry and its esterase-specific cleavage of ECMal-PROTAC is characterized in physiological conditions. The albumin-bound ECMal-PROTACs (Alb-ECMal-PROTACs) have an average size of 6.99 ± 1.38 nm, which is similar to that of free albumins without denaturation or aggregation. When Alb-ECMal-PROTACs are treated to 4T1 tumor cells, they are actively endocytosed and reach their highest intracellular level within 12 h. Furthermore, the maleimide linkers of Alb-ECMal-PROTACs are cleaved by the esterase to release free BRD-4 degrading PROTACs and the cell-internalized PROTACs successfully catalyze the selective degradation of BRD4 proteins, resulting in BRD4 deficiency-related apoptosis. When ECMal-PROTACs are intravenously injected into tumor-bearing mice, they exhibit a 16.3-fold higher tumor accumulation than free BRD4-PROTAC, due to the shuttling effect of albumin for tumor targeting. Finally, ECMal-PROTACs show 5.3-fold enhanced antitumor efficacy compared to free BRD4-PROTAC, without provoking any severe systemic toxicity. The expression of Bcl-2 and c-Myc, the downstream oncogenic proteins of BRD4, are also effectively suppressed. In summary, the in situ albumin binding of ECMal-PROTAC is proven as a promising strategy that effectively modulates its pharmacokinetics and therapeutic performance with high applicability to other types of PROTACs.


Assuntos
Neoplasias , Proteínas Nucleares , Animais , Camundongos , Albuminas/metabolismo , Esterases/metabolismo , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Quimera de Direcionamento de Proteólise
6.
ACS Appl Mater Interfaces ; 15(1): 120-137, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184560

RESUMO

In view of the fact that the blood-brain barrier (BBB) prevents the transport of imaging probes and therapeutic agents to the brain and thus hinders the diagnosis and treatment of brain-related disorders, methods of circumventing this problem (e.g., ultrasound-mediated nanoparticle delivery) have drawn much attention. Among the related techniques, focused ultrasound (FUS) is a favorite means of enhancing drug delivery via transient BBB opening. Photoacoustic brain imaging relies on the conversion of light into heat and the detection of ultrasound signals from contrast agents, offering the benefits of high resolution and large penetration depth. The extensive versatility and adjustable physicochemical properties of nanoparticles make them promising therapeutic agents and imaging probes, allowing for successful brain imaging and treatment through the combined action of ultrasound and nanoparticulate agents. FUS-induced BBB opening enables nanoparticle-based drug delivery systems to efficiently access the brain. Moreover, photoacoustic brain imaging using nanoparticle-based contrast agents effectively visualizes brain morphologies or diseases. Herein, we review the progress in the simultaneous use of nanoparticles and ultrasound in brain research, revealing the potential of ultrasound-mediated nanoparticle delivery for the effective diagnosis and treatment of brain disorders.


Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Neuroimagem
7.
Pharmaceutics ; 14(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36297566

RESUMO

A prodrug is bioreversible medication that is specifically converted to the active drugs by enzymes overexpressed in the tumor microenvironment, which can considerably reduce the chemotherapy-induced side effects. However, prodrug strategies usually have low antitumor efficacy compared to free drugs by delayed drug release. This is because they need time to be activated by enzymatic cleavage and they also cannot be fully recovered to the active drugs. Therefore, highly potent anticancer drug should be considered to expect a sufficient antitumor efficacy. Herein, we propose tumor-specific monomethyl auristatin E (MMAE) prodrug nanoparticles for safe and effective chemotherapy. The cathepsin B-specific cleavable FRRG peptide and MMAE are chemically conjugated via one-step simple synthetic chemistry. The resulting FRRG-MMAE molecules form stable nanoparticles without any additional carrier materials by hydrophobic interaction-derived aggregations. The FRRG-MMAE nanoparticles efficiently accumulate within the tumor tissues owing to the enhanced permeability and retention (EPR) effect and inhibit the tubulin polymerization by releasing free MMAE in the cathepsin B-overexpressed tumor cells. In contrast, FRRG-MMAE nanoparticles maintain a non-toxic inactive state in the normal tissues owing to innately low cathepsin B expression, thereby reducing MMAE-related severe toxicity. Collectively, this study provides a promising approach for safe and effective chemotherapy via MMAE-based prodrug nanoparticles, which may open new avenues for advanced drug design for translational nanomedicine.

8.
Pharmaceutics ; 14(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35456562

RESUMO

Albumin has shown remarkable promise as a natural drug carrier by improving pharmacokinetic (PK) profiles of anticancer drugs for tumor-targeted delivery. The exogenous or endogenous albumin enhances the circulatory half-lives of anticancer drugs and passively target the tumors by the enhanced permeability and retention (EPR) effect. Thus, the albumin-based drug delivery leads to a potent antitumor efficacy in various preclinical models, and several candidates have been evaluated clinically. The most successful example is Abraxane, an exogenous human serum albumin (HSA)-bound paclitaxel formulation approved by the FDA and used to treat locally advanced or metastatic tumors. However, additional clinical translation of exogenous albumin formulations has not been approved to date because of their unexpectedly low delivery efficiency, which can increase the risk of systemic toxicity. To overcome these limitations, several prodrugs binding endogenous albumin covalently have been investigated owing to distinct advantages for a safe and more effective drug delivery. In this review, we give account of the different albumin-based drug delivery systems, from laboratory investigations to clinical applications, and their potential challenges, and the outlook for clinical translation is discussed. In addition, recent advances and progress of albumin-binding drugs to move more closely to the clinical settings are outlined.

9.
Cancers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454950

RESUMO

One of the promising cancer treatment methods is photothermal therapy (PTT), which has achieved good therapeutic efficiency through nanoparticle-based photoabsorbers. Because of the various functions of nanoparticles, such as targeting properties, high light-to-heat conversion, and photostability, nanoparticle-mediated PTT successfully induces photothermal damage in tumor tissues with minimal side effects on surrounding healthy tissues. The therapeutic efficacy of PTT originates from cell membrane disruption, protein denaturation, and DNA damage by light-induced heat, but these biological impacts only influence localized tumor areas. This conventional nanoparticle-mediated PTT still attracts attention as a novel cancer immunotherapy, because PTT causes immune responses against cancer. PTT-induced immunogenic cell death activates immune cells for systemic anti-cancer effect. Additionally, the excellent compatibility of PTT with other treatment methods (e.g., chemotherapy and immune checkpoint blockade therapy) reinforces the therapeutic efficacy of PTT as combined immunotherapy. In this review, we investigate various PTT agents of nanoparticles and compare their applications to reveal how nanoparticle-mediated PTT undergoes a transition from thermotherapy to immunotherapy.

10.
J Biomater Sci Polym Ed ; 33(1): 57-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503403

RESUMO

Co-delivery of microbubbles (MBs) with anticancer drugs is a promising theranostic approach that can enhance both the ultrasound contrast and local extravasation of drugs with the sonoporation effect. The simultaneous administration of MBs and hydrophobic drugs, however, is still challenging due to the limitations in drug loading or undesirable stabilization of MBs. In this research, MB-self-aggregate complexes (MB-SAs) were newly fabricated for the encapsulation of hydrophobic drugs, and their theranostic properties are investigated in vitro and in vivo. Glycol chitosan self-aggregates (GC-SAs) loaded with hydrophobic drugs or dyes were chemically conjugated on the surface MBs. Their conjugation ratio was determined to be 73.9%, and GC-SAs on MBs did not affect the stability of MBs. GC-SA attached MBs (GC@MBs) were successfully visualized with low-intensity insonation and showed enhanced cellular uptake via the sonoporation effect. In vivo biodistribution of GC@MBs was examined with tumor-bearing mice, confirming that their accumulation at the tumor site increased by 1.85 times after ultrasound irradiation. The anticancer drug-loaded GC@MBs also exhibited 10% higher cytotoxicity under ultrasound flash. In conclusion, it was expected that GC@MBs could be used both as an ultrasound contrast agent and a drug carrier even with conventional ultrasonic devices.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Camundongos , Distribuição Tecidual
11.
J Biomater Sci Polym Ed ; 33(4): 409-425, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34613885

RESUMO

Transarterial chemoembolization (TACE) is a therapeutic approach to address hepatocellular carcinoma by obstructing the blood supply to the tumor using embolic agents and improving the local delivery of anticancer agents. Size-calibrated polymeric microspheres (MSs) termed drug-eluting beads (DEBs) are the most prevalent solid embolic materials; however, their limitations include insufficient X-ray visibility or biodegradability. In this study, size-controlled polymeric MSs with inherent radiopacity and biodegradability were created, and their embolic effect was assessed. Poly(lactide-co-glycolide) MSs (PLGA MSs) incorporating a hydrophobic X-ray contrast agent and an anticancer drug were produced by the w/o/w emulsion process. Their sizes were exactly calibrated to 71.40 ± 32.18 and 142.66 ± 59.92 µm in diameter, respectively, which were confirmed to have sizes similar to the clinically available DEBs. The iodine content of PLGA MSs was calculated as 144 mgI/g, and the loading quantity of the drug was 1.33%. Manufactured PLGA MSs were gradually degraded for 10 weeks and consistently released the anticancer drug. Following the PLGA MSs injection into the renal artery of New Zealand white rabbit test subjects, their deliverability to the targeted vessel through the microcatheter was confirmed. Injected PLGA MSs were clearly imaged through the real-time X-ray device without blending any contrast agents. The embolic effect of the PLGA MSs was ultimately established by the atrophy of an embolized kidney after 8 weeks. Consequently, the designed PLGA MS is anticipated to be an encouraging prospect to address hepatocellular carcinoma.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Meios de Contraste , Humanos , Ácido Láctico/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Microesferas , Poliglactina 910 , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos
12.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641524

RESUMO

Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively convert light into heat. Gold nanoparticles have various unique properties which are suitable for photoabsorbers, e.g., controllable optical properties and easy surface modification. We developed gold nanodot swarms (AuNSw) by creating small gold nanoparticles (sGNPs) in the presence of hydrophobically-modified glycol chitosan. The sGNPs assembled with each other through their interaction with amine groups of glycol chitosan. AuNSw absorbed 808-nm laser and increased temperature to 55 °C. In contrast, AuNSw lost its particle structure upon exposure to thiolated molecules and did not convert NIR light into heat. In vitro studies demonstrated the photothermal effect and immunogenic cell death after PTT with AuNSW. After intratumoral injection of AuNSw with laser irradiation, tumor growth of xenograft mouse models was depressed. We found hyperthermal damage and immunogenic cell death in tumor tissues through histological and biochemical analyses. Thiol-responsive AuNSw showed feasibility for PTT, with advanced functionality in the tumor microenvironment.


Assuntos
Quitosana/química , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos , Animais , Ouro/química , Humanos , Terapia a Laser , Masculino , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Tamanho da Partícula , Terapia Fototérmica/instrumentação , Compostos de Sulfidrila/química , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Acta Biomater ; 131: 286-301, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246803

RESUMO

Injectable hydrogels have been studied as drug delivery systems because of their minimal invasiveness and sustained drug release properties. Pluronic F127, consisting of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers, exhibits thermo-responsive properties and hence is injectable due to its rapid sol-gel transition. Unmodified Pluronic F127-based hydrogels, however, have limited long-term stability and controllable release of drugs entrapped within them. In this study, host-guest interactions between adamantane-conjugated Pluronic F127 (F127-Ad) and polymerized ß-cyclodextrin (CDP) were employed to develop a hydrogel-based protein delivery system. Single or multiple adamantane units were successfully introduced at the termini of Pluronic F127 with a 100% conversion yield, and the synthesized F127-Ad polymer produced a physically crosslinked micelle-packing structure when mixed with CDP. As the number of adamantanes at the terminal ends of Pluronic F127 increased, the critical gelation concentration of F127-Ad/CDP hydrogel decreased from 15 to 6% (w/v). The F127/CDP hydrogel was able to maintain its structure even with lower polymer content, and its injectability improved with a reduction of the hydrogel viscosity. The long-term stability of F127/CDP hydrogels was evaluated in vitro and in vivo, and it was demonstrated that the subcutaneously injected hydrogel did not disintegrate for up to 30 d. Throughout the drug release test using gelatin and insulin as model drugs, it was demonstrated that their release rates could be regulated via complexation between the protein drugs and the ß-cyclodextrin molecules inside the hydrogel. In conclusion, the F127-Ad/CDP hydrogel is expected to be a versatile protein delivery system with controllable durability and drug release characteristics. STATEMENT OF SIGNIFICANCE: Pluronic F127 is one of the widely studied polymeric materials for thermo-sensitive injectable hydrogels due to its high biocompatibility and rapid sol-gel transition. Since the Pluronic F127-based hydrogel has some limitations in its long-term stability and mechanical property, it is inevitable to modify its structure for the application to drug delivery. In this study, mono- or multi- adamantane-conjugated Pluronic F127s were synthesized and mixed with ß-cyclodextrin polymers to form hydrogels with host-guest interaction-mediated micelle-packing structures. The host-guest interaction introduced into the hydrogel system endowed it a sustained protein drug release behavior as well as high durability in vitro and in vivo. By increasing the number of adamantane molecules at the end of the Pluronic F127, both the stability and injectability of the hydrogel could be also modulated.


Assuntos
Hidrogéis , Poloxâmero , Liberação Controlada de Fármacos , Micelas , Proteínas , Temperatura
14.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203541

RESUMO

Lymph node mapping is important in cancer immunotherapy because the morphology of lymph nodes is one of the crucial evaluation criteria of immune responses. We developed new theragnostic glycol-chitosan-coated gold nanoparticles (GC-AuNPs), which highlighted lymph nodes in ultrasound-guided photoacoustic (US/PA) imaging. Moreover, the ovalbumin epitope was conjugated GC-AuNPs (OVA-GC-AuNPs) for delivering tumor antigen to lymph node resident macrophage. In vitro studies proved the vigorous endocytosis activity of J774A.1 macrophage and consequent strong photoacoustic signals from them. The macrophages also presented a tumor antigen when OVA-GC-AuNPs were used for cellular uptake. After the lingual injection of GC-AuNPs into healthy mice, cervical lymph nodes were visible in a US/PA imaging system with high contrast. Three-dimensional analysis of lymph nodes revealed that the accumulation of GC-AuNPs in the lymph node increased as the post-injection time passed. Histological analysis showed GC-AuNPs or OVA-GC-AuNPs located in subcapsular and medullar sinuses where macrophages are abundant. Our new theragnostic GC-AuNPs present a superior performance in US/PA imaging of lymph nodes without targeting moieties or complex surface modification. Simultaneously, GC-AuNPs were able to deliver tumor antigens to cause macrophages to present the OVA epitope at targeted lymph nodes, which would be valuable for cancer immunotherapy.

15.
ACS Nano ; 15(6): 10141-10152, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34097394

RESUMO

For organ transplantation patients, the therapeutic drug monitoring (TDM) of immunosuppressive drugs is essential to prevent the toxicity or rejection of the organ. Currently, TDM is done by immunoassays or liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods; however, these methods lack specificity or are expensive, require high levels of skill, and offer limited sample throughput. Although matrix-assisted (MA) laser desorption ionization (LDI) mass spectrometry (MS) can provide enhanced throughput and cost-effectiveness, its application in TDM is limited due to the limitations of the matrixes such as a lack of sensitivity and reproducibility. Here, we present an alternative quantification method for the TDM of the immunosuppressive drugs in the blood of organ transplant patients by utilizing laser desorption ionization mass spectrometry (LDI-MS) based on a tungsten disulfide nanosheet, which is well-known for its excellent physicochemical properties such as a strong UV absorbance and high electron mobility. By adopting a microliquid inkjet printing system, a high-throughput analysis of the blood samples with enhanced sensitivity and reproducibility was achieved. Furthermore, up to 80 cases of patient samples were analyzed and the results were compared with those of LC-MS/MS by using Passing-Bablok regression and Bland-Altman analysis to demonstrate that our LDI-MS platform is suitable to replace current TDM techniques. Our approach will facilitate the rapid and accurate analysis of blood samples from a large number of patients for immunosuppressive drug prescriptions.


Assuntos
Preparações Farmacêuticas , Tungstênio , Cromatografia Líquida , Dissulfetos , Humanos , Lasers , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
16.
J Mater Chem B ; 9(11): 2631-2640, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33683280

RESUMO

Islet cell transplantation has been an effective method for the treatment of type 1 diabetes. The transplanted islets release insulin in response to changes in blood glucose levels. The clinical application of islet transplantation, however, has been hindered because of some critical problems including immune responses to grafted islets and side effects caused by overdosed immunosuppressive drugs. Herein, surface modification technology using poly(ethylene glycol) (PEG)-dendron was proposed to safeguard islets from the host immune system. PEG-dendron was synthesized by a divergent polymerization method and utilized to cover the islet antigen surface. Successful conjugation of PEG-dendron on the islet surface was achieved without affecting islet morphology, viability, and functionality at a concentration of 1.00%. Surface modification using PEG-dendron effectively prevented protein absorption and immune activation. Foremost, it improved the survival rate of islet grafts in vivo when combined with a low dose of immunosuppressive drugs. In conclusion, PEG-dendron is a potential candidate for the surface modification of pancreatic islets to mitigate immune responses after transplantation.


Assuntos
Dendrímeros/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Imunossupressores/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Animais , Dendrímeros/química , Diabetes Mellitus Experimental/imunologia , Imunossupressores/química , Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
17.
Pharmaceutics ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35056979

RESUMO

Prodrugs are bioreversible medications that should undergo an enzymatic or chemical transformation in the tumor microenvironment to release active drugs, which improve cancer selectivity to reduce toxicities of anticancer drugs. However, such approaches have been challenged by poor therapeutic efficacy attributed to a short half-life and low tumor targeting. Herein, we propose cathepsin B-overexpressed tumor cell activatable albumin-binding doxorubicin prodrug, Al-ProD, that consists of a albumin-binding maleimide group, cathepsin B-cleavable peptide (FRRG), and doxorubicin. The Al-ProD binds to in situ albumin, and albumin-bound Al-ProD indicates high tumor accumulation with prolonged half-life, and selctively releases doxorubicin in cathepsin B-overexpressed tumor cells, inducing a potent antitumor efficacy. Concurrently, toxicity of Al-ProD toward normal tissues with innately low cathepsin B expression is significantly reduced by maintaining an inactive state, thereby increasing the safety of chemotherapy. This study offers a promising approach for effective and safe chemotherapy, which may open new avenues for drug design and translational medicine.

18.
J Biomed Opt ; 24(12): 1-5, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31385483

RESUMO

Utility of glycol-chitosan-coated gold nanoparticles (GC-AuNPs) as a photoacoustic contrast agent for cancer cell imaging was demonstrated. Through the synergistic effect of glycol chitosan and gold nanoparticles, GC-AuNPs showed cellular uptake in breast cancer cells and resulted in strong photoacoustic signals in tissue-mimicking cell phantoms. The performance of GC-AuNPs as contrast agents was established with photoacoustic imaging and confirmed with dark-field microscopy. The cell phantoms displayed strong photoacoustic signals if cells were incubated more than 3 h with GC-AuNPs, compared with PEG-AuNPs that showed no photoacoustic signal increase. The enhanced photoacoustic signals originated from the plasmon coupling effect of GC-AuNPs after the cellular uptake in cancer cells. Importantly, photoacoustic imaging of cancer cells was achieved with GC-AuNPs­contrast agents that did not require antibodies or complex surface modification. The endocytosis of GC-AuNPs was also confirmed with dark-field microscopy. The results show that GC-AuNPs have potential as a photoacoustic contrast agent for cellular imaging including tumor tissue imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Quitosana/química , Meios de Contraste/química , Ouro/química , Nanopartículas Metálicas/química , Técnicas Fotoacústicas , Linhagem Celular Tumoral , Endocitose , Feminino , Humanos , Imagens de Fantasmas , Transdução de Sinais , Espectrofotometria Ultravioleta , Propriedades de Superfície , Fatores de Tempo
19.
Biomaterials ; 154: 182-196, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128846

RESUMO

This study aims to develop a novel surface modification technology to prolong the survival time of pancreatic islets in a xenogenic transplantation model, using 3,4-dihydroxyphenethylamine (DOPA) conjugated poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (DOPA-NPs) carrying immunosuppressant FK506 (FK506/DOPA-NPs). The functionalized DOPA-NPs formed a versatile coating layer for antigen camouflage without interfering the viability and functionality of islets. The coating layer effectively preserved the morphology and viability of islets in a co-culture condition with xenogenic lymphocytes for 7 days. Interestingly, the mean survival time of islets coated with FK506/DOPA-NPs was significantly higher as compared with that of islets coated with DOPA-NPs (without FK506) and control. This study demonstrated that the combination of surface camouflage and localized low dose of immunosuppressant could be an effective approach in prolonging the survival of transplanted islets. This newly developed platform might be useful for immobilizing various types of small molecules on therapeutic cells and biomaterial surface to improve the therapeutic efficacy in cell therapy and regenerative medicine.


Assuntos
Diabetes Mellitus Experimental/terapia , Sobrevivência de Enxerto , Xenoenxertos , Ilhotas Pancreáticas/fisiologia , Nanopartículas/química , Polímeros/química , Tacrolimo/farmacologia , Adesivos Teciduais/farmacologia , Animais , Materiais Revestidos Biocompatíveis/química , Colágeno/química , Diabetes Mellitus Experimental/patologia , Di-Hidroxifenilalanina/farmacologia , Modelos Animais de Doenças , Sobrevivência de Enxerto/efeitos dos fármacos , Ácido Láctico/química , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Sobrevivência de Tecidos/efeitos dos fármacos , Transplante Heterólogo
20.
Biomaterials ; 150: 125-136, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29035738

RESUMO

Thrombosis is an important pathophysiologic phenomenon in various cardiovascular diseases, which can lead to oxygen deprivation and infarction of tissues by generation of a thrombus. Thus, direct thrombus imaging can provide beneficial in diagnosis and therapy of thrombosis. Herein, we developed thrombin-activatable fluorescent peptide (TAP) incorporated silica-coated gold nanoparticles (TAP-SiO2@AuNPs) for direct imaging of thrombus by dual near-infrared fluorescence (NIRF) and micro-computed tomography (micro-CT) imaging, wherein TAP molecules were used as targeted thrombin-activatable peptide probes for thrombin-specific NIRF imaging. The freshly prepared TAP-SiO2@AuNPs had an average diameter of 39.8 ± 2.55 nm and they showed the quenched NIRF signal in aqueous condition, due to the excellent quenching effect of TAP molecules on the silica-gold nanoparticle surface. However, 30.31-fold higher NIRF intensity was rapidly recovered in the presence of thrombin in vitro, due to the thrombin-specific cleavage of quenched TAP molecules on the gold particle surface. Furthermore, TAP-SiO2@AuNPs were successfully accumulated in thrombus by their particle size-dependent capturing property, and they presented a potential X-ray absorption property in a dose-dependent manner. Finally, thrombotic lesion was clearly distinguished from peripheral tissues by dual NIRF/micro-CT imaging after intravenous injection of TAP-SiO2@AuNPs in the in situ thrombotic mouse model, simultaneously. This study showed that thrombin-activatable fluorescent peptide incorporated silica-coated gold nanoparticles can be potentially used as a dual imaging probe for direct thrombus imaging and therapy in clinical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Trombina/metabolismo , Trombose/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Modelos Animais de Doenças , Corantes Fluorescentes/química , Ouro/química , Masculino , Nanopartículas Metálicas/química , Camundongos , Peptídeos/química , Dióxido de Silício/química , Espectroscopia de Luz Próxima ao Infravermelho , Trombose/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...