Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400919, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976563

RESUMO

Metal-semiconductor interfaces are crucial components of optoelectronic and electrical devices, the performance of which hinges on intricate dynamics involving charge transport and mechanical interaction at the interface. Nevertheless, structural changes upon photoexcitation and subsequent carrier transportation at the interface, which crucially impact hot carrier stability and lifetime, remain elusive. To address this long-standing problem, they investigated the electron dynamics and resulting structural changes at the Au/TiO2 interface using ultrafast electron diffraction (UED). The analysis of the UED data reveals that interlayer electron transfer from metal to semiconductor generates a strong coupling between the two layers, offering a new way for ultrafast heat transfer through the interface and leading to a coherent structural vibration that plays a critical role in propagating mechanical stress. These findings provide insights into the relationship between electron transfer and interfacial mechanical and thermal properties.

2.
Nature ; 625(7996): 710-714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200317

RESUMO

Molecular ions are ubiquitous and play pivotal roles1-3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4-6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9-11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that mega-electronvolt ultrafast electron diffraction (MeV-UED)12-14, used in conjunction with resonance-enhanced multiphoton ionization, can monitor the formation of 1,3-dibromopropane (DBP) cations and their subsequent structural dynamics forming a halonium ion. We find that the DBP+ cation remains for a substantial duration of 3.6 ps in aptly named 'dark states' that are structurally indistinguishable from the DBP electronic ground state. The structural data, supported by surface-hopping simulations15 and ab initio calculations16, reveal that the cation subsequently decays to iso-DBP+, an unusual intermediate with a four-membered ring containing a loosely bound17,18 bromine atom, and eventually loses the bromine atom and forms a bromonium ion with a three-membered-ring structure19. We anticipate that the approach used here can also be applied to examine the structural dynamics of other molecular ions and thereby deepen our understanding of ion chemistry.

3.
Nat Commun ; 13(1): 522, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082327

RESUMO

Energy, structure, and charge are fundamental quantities characterizing a molecule. Whereas the energy flow and structure change in chemical reactions are experimentally characterized, determining the atomic charges of a molecule in solution has been elusive, even for a triatomic molecule such as triiodide ion, I3-. Moreover, it remains to be answered how the charge distribution is coupled to the molecular geometry; which I-I bond, if two I-I bonds are unequal, dissociates depending on the electronic state. Here, femtosecond anisotropic x-ray solution scattering allows us to provide the following answers in addition to the overall rich structural dynamics. The analysis unravels that the negative charge of I3- is highly localized on the terminal iodine atom forming the longer bond with the central iodine atom, and the shorter I-I bond dissociates in the excited state, whereas the longer one in the ground state. We anticipate that this work may open a new avenue for studying the atomic charge distribution of molecules in solution and taking advantage of orientational information in anisotropic scattering data for solution-phase structural dynamics.

5.
J Am Chem Soc ; 143(35): 14261-14273, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34455778

RESUMO

Optical Kerr effect (OKE) spectroscopy is a method that measures the time-dependent change of the birefringence induced by an optical laser pulse using another optical laser pulse and has been used often to study the ultrafast dynamics of molecular liquids. Here we demonstrate an alternative method, femtosecond time-resolved X-ray liquidography (fs-TRXL), where the microscopic structural motions related to the OKE response can be monitored using a different type of probe, i.e., X-ray solution scattering. By applying fs-TRXL to acetonitrile and a dye solution in acetonitrile, we demonstrate that different types of molecular motions around photoaligned molecules can be resolved selectively, even without any theoretical modeling, based on the anisotropy of two-dimensional scattering patterns and extra structural information contained in the q-space scattering data. Specifically, the dynamics of reorientational (libration and orientational diffusion) and translational (interaction-induced motion) motions are captured separately by anisotropic and isotropic scattering signals, respectively. Furthermore, the two different types of reorientational motions are distinguished from each other by their own characteristic scattering patterns and time scales. The measured time-resolved scattering signals are in excellent agreement with the simulated scattering signals based on a molecular dynamics simulation for plausible molecular configurations, providing the detailed structural description of the OKE response in liquid acetonitrile.

6.
Phys Chem Chem Phys ; 22(48): 28440-28447, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33305764

RESUMO

Charge transfer (CT) from electron donor (D) to acceptor (A) plays an important role in photoelectric or electrochemical devices and is a useful concept for a molecule with D and A well distinguishable. Here, we report our finding that even in a molecule with D and A not resolvable, CT can be induced by electronic state mixing (ESM) in a symmetric multi-chromophore system (MCS), namely 1,4-di(1-pyrenyl)benzene (Py-Benz-Py). Unlike Py and Py-Benz, Py-Benz-Py exhibits unique photophysical properties attributable to the reduction of the energy gap between two electronic states induced by ESM. The ESM for Py-Benz-Py is due to the extended π-conjugation owing to the further introduction of Py into Py-Benz, and consequently leads to the favorable intramolecular CT, followed by the planarization due to the twisting motion between Py and phenyl moieties. Time-resolved spectroscopic data demonstrate that the twisting process of the Py moiety in acetonitrile occurs with two unequal time constants, suggesting the localized CT state and the asynchronous twisting dynamics of two Py moieties unlike the delocalized CT state in nonpolar and low-polarity solvents leading to the synchronous twisting of two Py moieties. This means that the symmetry-breaking CT in MCSs can induce an asynchronous twisting motion. The results reported here support that a molecule without CT can be turned into another molecule with CT induced by ESM and demonstrate that the excited-state relaxation dynamics can be regulated through the ESM induced by introducing the substituents or changing the environmental factors such as solvent polarities.

7.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992497

RESUMO

We report the generation of gold nanoparticles (AuNPs) from the aqueous solution of chloro(2,2',2″-terpyridine)gold(III) ion ([Au(tpy)Cl]2+) through X-ray radiolysis and optical excitation at a synchrotron. The original purpose of the experiment was to investigate the photoinduced structural changes of [Au(tpy)Cl]2+ upon 400 nm excitation using time-resolved X-ray liquidography (TRXL). Initially, the TRXL data did not show any signal that would suggest structural changes of the solute molecule, but after an induction time, the TRXL data started to show sharp peaks and valleys. In the early phase, AuNPs with two types of morphology, dendrites, and spheres, were formed by the reducing action of hydrated electrons generated by the X-ray radiolysis of water, thereby allowing the detection of TRXL data due to the laser-induced lattice expansion and relaxation of AuNPs. Along with the lattice expansion, the dendritic and spherical AuNPs were transformed into smaller, raspberry-shaped AuNPs of a relatively uniform size via ablation by the optical femtosecond laser pulse used for the TRXL experiment. Density functional theory calculations confirm that the reduction potential of the metal complex relative to the hydration potential of X-ray-generated electrons determines the facile AuNP formation observed for [Au(tpy)Cl]2+.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Soluções/química , Água/química , Difração de Raios X/métodos , Elétrons , Compostos de Ouro/química , Terapia a Laser/métodos , Lasers , Tamanho da Partícula , Radiólise de Impulso/métodos , Síncrotrons , Raios X
8.
J Org Chem ; 85(20): 12882-12900, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32969218

RESUMO

Knowledge about factors that govern chemoselectivity is pivotal to the design of reactions that are utilized to produce complex organic substances. In the current study, single-electron transfer (SET)-promoted photoaddition reactions of fullerene C60 with both trimethylsilyl and various alkyl group-containing glycinates and ethyl N-alkyl-N-((trimethylsilyl)methyl)glycinates were explored to evaluate how the nature of N-alkyl substituents of glycinate substrates and reaction conditions govern the chemoselectivity of reaction pathways followed. The results showed that photoreactions of C60 with glycinates, performed in deoxygenated conditions, produced aminomethyl-1,2-dihydrofullerenes efficiently through a pathway involving the addition of α-amino radical intermediates that are generated by sequential SET-solvent-assisted desilylation of glycinate substrates to C60. Under oxygenated conditions, photoreactions of glycinate substrates, except N-benzyl-substituted analogues, did not take place efficiently owing to quenching of 3C60* by oxygen. Interestingly, N-benzyl-substituted glycinates did react under these conditions to form fulleropyrrolidines through a pathway involving 1,3-dipolar cycloaddition of in situ formed azomethine ylides to C60. The ylide intermediates were formed by regioselective H-atom transfer from glycinates by singlet oxygen. Furthermore, methylene blue (MB)-photosensitized reactions of C60 with glycinates under oxygenated conditions took place efficiently to produce fulleropyrrolidines independent of the nature of N-alkyl substituents of glycinates.

9.
Nature ; 582(7813): 520-524, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581378

RESUMO

Fundamental studies of chemical reactions often consider the molecular dynamics along a reaction coordinate using a calculated or suggested potential energy surface1-5. But fully mapping such dynamics experimentally, by following all nuclear motions in a time-resolved manner-that is, the motions of wavepackets-is challenging and has not yet been realized even for the simple stereotypical bimolecular reaction6-8: A-B + C â†’ A + B-C. Here we track the trajectories of these vibrational wavepackets during photoinduced bond formation of the gold trimer complex [Au(CN)2-]3 in an aqueous monomer solution, using femtosecond X-ray liquidography9-12 with X-ray free-electron lasers13,14. In the complex, which forms when three monomers A, B and C cluster together through non-covalent interactions15,16, the distance between A and B is shorter than that between B and C. Tracking the wavepacket in three-dimensional nuclear coordinates reveals that within the first 60 femtoseconds after photoexcitation, a covalent bond forms between A and B to give A-B + C. The second covalent bond, between B and C, subsequently forms within 360 femtoseconds to give a linear and covalently bonded trimer complex A-B-C. The trimer exhibits harmonic vibrations that we map and unambiguously assign to specific normal modes using only the experimental data. In principle, more intense X-rays could visualize the motion not only of highly scattering atoms such as gold but also of lighter atoms such as carbon and nitrogen, which will open the door to the direct tracking of the atomic motions involved in many chemical reactions.

10.
Chemistry ; 25(32): 7711-7718, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30957282

RESUMO

Despite numerous experimental and theoretical studies, the proton transfer accompanying the oxidation of 2'-deoxyadenosine 5'-monophosphate 2'-deoxyadenosine 5'-monophosphate (5'-dAMP, A) is still under debate. To address this issue, we have investigated the oxidation of A in acidic and neutral solutions by using transient absorption (TA) and time-resolved resonance Raman (TR3 ) spectroscopic methods in combination with pulse radiolysis. The steady-state Raman signal of A was significantly affected by the solution pH, but not by the concentration of adenosine (2-50 mm). More specifically, the A in acidic and neutral solutions exists in its protonated (AH+ (N1+H+ )) and neutral (A) forms, respectively. On the one hand, the TA spectral changes observed at neutral pH revealed that the radical cation (A.+ ) generated by pulse radiolysis is rapidly converted into A. (N6-H) through the loss of an imino proton from N6. In contrast, at acidic pH (<4), AH.2+ (N1+H+ ) generated by pulse radiolysis of AH+ (N1+H+ ) does not undergo the deprotonation process owing to the pKa value of AH.2+ (N1+H+ ), which is higher than the solution pH. Furthermore, the results presented in this study have demonstrated that A, AH+ (N1+H+ ), and their radical species exist as monomers in the concentration range of 2-50 mm. Compared with the Raman bands of AH+ (N1+H+ ), the TR3 bands of AH.2+ (N1+H+ ) are significantly down-shifted, indicating a decrease in the bond order of the pyrimidine and imidazole rings due to the resonance structure of AH.2+ (N1+H+ ). Meanwhile, A. (N6-H) does not show a Raman band corresponding to the pyrimidine+NH2 scissoring vibration due to diprotonation at the N6 position. These results support the final products generated by the oxidation of adenosine in acidic and neutral solutions being AH.2+ (N1+H+ ) and A. (N6-H), respectively.

11.
J Phys Chem Lett ; 10(6): 1279-1285, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30835478

RESUMO

Bismuth triiodide, BiI3, is one of the simplest bismuth halides, which have recently attracted considerable attention because of their promising properties. Here, we investigate the structural dynamics of a photoinduced reaction of BiI3 in solution phase using time-resolved X-ray liquidography (TRXL) and density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The photoreaction was initiated by excitation at 400 nm, which corresponds to the ligand-to-metal charge-transfer transition. The detailed structures and kinetic profiles of all relevant intermediate species from the TRXL data show that the trigonal planar structure of BiI3, which is predicted to be the most stable structure of the lowest excited state by TDDFT calculation, was not observed, and the photoreaction proceeds via two parallel pathways within the time resolution of 100 ps: (i) isomer formation to produce iso-BiI2-I, which relaxes back to the ground-state structure, and (ii) dissociation into BiI2· and I· radicals, which nongeminately recombine to generate ground-state BiI3 and I2.

12.
Chemistry ; 25(21): 5586-5594, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30892780

RESUMO

Although dimer radical ions of aromatic molecules in the liquid-solution phase have been intensely studied, the understanding of charge-localized dimers, in which the extra charge is localized in a single monomer unit instead of being shared between two monomer units, is still elusive. In this study, the formation of a charge-localized dimer radical cation of 2-ethyl-9,10-dimethoxyanthracene (DMA), (DMA)2 .+ is investigated by transient absorption (TA) and time-resolved resonance Raman (TR3 ) spectroscopic methods combined with a pulse radiolysis technique. Visible- and near-IR TA signals in highly concentrated DMA solutions supported the formation of non-covalent (DMA)2 .+ by association of DMA and DMA.+ . TR3 spectra obtained from 30 ns to 300 µs time delays showed that the major bands are quite similar to those of DMA except for small transient bands, even at 30 ns time delay, suggesting that the positive charge of non-covalent (DMA)2 .+ is localized in a single monomer unit. From DFT calculations for (DMA)2 .+ , our TR3 spectra showed the best agreement with the calculated Raman spectrum of charge-localized edge-to-face T-shaped (DMA)2 .+ , termed DT.+ , although the charge-delocalized asymmetric π-stacked face-to-face (DMA)2 .+ , termed DF3.+ , is the most stable structure of (DMA)2 .+ according to the energetics from DFT calculations. The calculated potential energy curves for the association between DMA.+ and DMA showed that DT.+ is likely to be efficiently formed and contribute significantly to the TR3 spectra as a result of the permanent charge-induced Coulombic interactions and a dynamic equilibrium between charge localized and delocalized structures.

13.
J Am Chem Soc ; 140(23): 7101-7107, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29697259

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) attract much attention for applications to organic light-emitting diodes, field-effect transistors, and photovoltaic cells. The current synthetic approaches to PAHs involve high-temperature flash pyrolysis or complicated step-by-step organic reactions, which lead to low yields of PAHs. Herein, we report a facile and scalable synthesis of PAHs, which is carried out simply by flowing acetylene gas into zeolite under mild heating, typically at 400 °C and generates the products of 0.30 g g-1 zeolite. PAHs are synthesized via acetylene polymerization inside Ca2+-ion-exchanged Linde type A (LTA) zeolite, of which the α-cage puts a limit on the product molecular size as a confined-space nanoreactor. The resultant product after the removal of the zeolite framework exhibits brilliant white fluorescence emission in N-methylpyrrolidone solution. The product is separated into four different color emitters (violet, blue, green, and orange) by column chromatography. Detailed characterizations of the products by means of various spectroscopic methods and mainly mass spectrometric analyses indicate that coronene (C24H12) is the main component of the blue emitter, while the green emitter is a mixture of planar and curved PAHs. The orange can be attributed to curved PAHs larger than ovalene, and the violet to smaller molecules than coronene. The PAH growth mechanism inside Ca2+-exchanged LTA zeolite is proposed on the basis of mass spectral analyses and density functional theory calculations.

14.
J Phys Chem A ; 122(5): 1194-1199, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29337558

RESUMO

Conformational isomers of hydroquinone and their 1:1 clusters with water have been spatially separated using a Stark deflector in a supersonic jet. trans-Hydroquinone (HyQ) conformer with zero dipole moment is little influenced by inhomogeneous electric fields, whereas cis conformer with nonzero dipole moment (2.38 D) is significantly deflected from the molecular beam axis into the direction along which the strong field gradient is applied. Resonant two photon ionization carried out by shifting the laser position perpendicular to the molecular beam axis after the Stark deflector then gives an exclusive S1-S0 excitation spectrum of the cis conformer only, making possible immaculate conformer-specific spectroscopy and dynamics. As the spatial separation is apparently proportional to the effective dipole moment strength, conformational assignment could be absolute in the Stark deflector, which contrasts with the hole-burning spectroscopic technique where identification of a conformational isomer is intrinsically not unambiguous. trans- and cis-HyQ-H2O clusters have also been spatially separated according to their distinct effective dipole moment strengths to give absolute spectroscopic identification of each cluster isomer, nailing down the otherwise disputable conformational assignment. This is the first report for the spatial separation of conformational cluster isomers.

15.
Angew Chem Int Ed Engl ; 55(10): 3295-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26847383

RESUMO

Here we present a combined experimental and theoretical study on the secondary structure of isolated proteins as a function of charge state. In infrared spectra of the proteins ubiquitin and cytochrome c, amide I (C=O stretch) and amide II (N-H bend) bands can be found at positions that are typical for condensed-phase proteins. For high charge states a new band appears, substantially red-shifted from the amide II band observed at lower charge states. The observations are interpreted in terms of Coulomb-driven transitions in secondary structures from mostly helical to extended C5 -type hydrogen-bonded structures. Support for this interpretation comes from simple energy considerations as well as from quantum chemical calculations on model peptides. This transition in secondary structure is most likely universal for isolated proteins that occur in mass spectrometric experiments.


Assuntos
Citocromos c/química , Ubiquitina/química , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho
16.
Phys Chem Chem Phys ; 17(34): 21902-11, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26234567

RESUMO

Ultracold IR spectra of the protonated five amino acid peptide leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) embedded in superfluid helium droplets have been recorded using a free-electron laser as radiation source. The results show resolved spectra, which are in good agreement with theoretical calculations, as well as with the available gas-phase data indicating that the helium environment does not induce a significant matrix-shift. In addition, the effect of the interaction between the charge and the peptide backbone has been further investigated by complexing protonated leu-enkephalin with one 18-crown-6 molecule. Good agreement between the experimental and theoretical results allow for an assignment of a preferred molecular structure.


Assuntos
Éteres de Coroa/química , Encefalina Leucina/química , Hélio/química , Prótons , Ligação de Hidrogênio , Lasers , Modelos Moleculares , Conformação Proteica , Solventes/química , Espectrofotometria Infravermelho
17.
J Phys Chem A ; 117(10): 2138-43, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23428211

RESUMO

The photoionization of Cr at excited states is investigated using a velocity-map photoelectron imaging technique. Benzene chromium carbonyl or bis(η(6)-benzene) chromium was used as a precursor for the generation of excited Cr atoms. The a (5)S2 → x (5)P°3 and a (5)D3 → y (5)D°2 transitions are then employed for the preparation of resonant intermediate states in a two-color two-photon ionization process, in which an electronic configurational change from 3d(4)((5)D)4s4p((1)P°) to 3d(4)4s((6)D(J+)) occurs. The photoelectron kinetic energy distribution is found to be very sensitive to the ionization energy and the total angular momentum quantum number of the chromium ion (J(+)). Anisotropy parameters associated with departing electrons also show significant variation depending on the energy and total angular momentum quantum number, suggesting that direct and/or indirect ionization should be quantum-mechanically mixed, manifesting the complicated nature of angular momentum couplings in the ionization continuum.

18.
Phys Chem Chem Phys ; 14(38): 13370-7, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22935688

RESUMO

We report on a method by which mass/charge selected ions are picked up from a linear ion trap by liquid helium droplets. The size distributions of the doped droplets are measured via acceleration experiments. Depending on the source temperature, droplet sizes ranging from tens of thousands to several million helium atoms are obtained. Droplets doped with hemin, an iron containing porphyrin molecule, in the charge state +1 are then investigated using laser spectroscopy. It is observed that excitation with UV/VIS light can lead to ejection of the ion from the droplet. For doped droplets with a median size of ~150,000 helium atoms, the absorption of two photons at 380 nm is needed for ejection to become efficient. When droplets become smaller, the ejection efficiency is observed to strongly increase. Monitoring the ejection yield as a function of excitation wavelength can be used to obtain the optical spectrum of hemin(+). Compared to the spectrum of free gas-phase hemin(+) at room temperature, the here obtained spectrum is slightly narrower and shifted to the blue.

19.
J Chem Phys ; 136(2): 024306, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22260578

RESUMO

Predissociation dynamics of methylamines (CH(3)NH(2) and CH(3)ND(2)) on the first electronically excited states are studied using the slow-electron velocity imaging method to unravel the multi-dimensional nature of the N-H(D) chemical bond dissociation reaction which occurs via tunnelling. The nearly free internal rotation around the C-N bond axis is found to be strongly coupled to the reaction pathway, revealing nuclear motions actively involved in the tunnelling process on the S(1) potential energy surfaces. The vibrational state-resolved energy and angular distributions of photoelectron, ejected from the ionization mediated by the metastable intermediate S(1) state provide a unique way for mapping the predissociative potential energy surfaces.


Assuntos
Elétrons , Metilaminas/química , Teoria Quântica , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...