Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(11): 7204-10, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26492109

RESUMO

Changes in the carrier mobility of tensile strained Si and SiGe nanowires (NWs) were examined using an electrical push-to-pull device (E-PTP, Hysitron). The changes were found to be closely related to the chemical structure at the surface, likely defect states. As tensile strain is increased, the resistivity of SiGe NWs deceases in a linear manner. However, the corresponding values for Si NWs increased with increasing tensile strain, which is closely related to broken bonds induced by defects at the NW surface. Broken bonds at the surface, which communicate with the defect state of Si are critically altered when Ge is incorporated in Si NW. In addition, the number of defects could be significantly decreased in Si NWs by incorporating a surface passivated Al2O3 layer, which removes broken bonds, resulting in a proportional decrease in the resistivity of Si NWs with increasing strain. Moreover, the presence of a passivation layer dramatically increases the extent of fracture strain in NWs, and a significant enhancement in mobility of about 2.6 times was observed for a tensile strain of 5.7%.

2.
Nano Lett ; 13(3): 1118-25, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23421739

RESUMO

The Young's modulus and fracture strength of Si(1-x)Ge(x) nanowires (NWs) as a function of Ge concentration were measured from tensile stress measurements. The Young's modulus of the NWs decreased linearly with increasing Ge content. No evidence was found for a linear relationship between the fracture strength of the NWs and Ge content, which is closely related to the quantity of interstitial Ge atoms contained in the wire. However, by removing some of the interstitial Ge atoms through rapid thermal annealing, a linear relationship could be produced. The discrepancy in the reported strength of Si and Ge NWs between calculated and experimented results could be related to SiO(2-x)/Si interfacial defects that are found in Si(1-x)Ge(x) NWs. It was also possible to significantly decrease the number of interfacial defects in the NWs by incorporating a surface passivated Al2O3 layer, which resulted in a substantial increase in fracture strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...