Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 14822-14831, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481126

RESUMO

As the applications of lithium-ion batteries (LIBs) have expanded, battery safety has emerged as a major concern because of the thermal runaway of LIBs arising from the use of flammable liquid electrolytes (LEs). Gel polymer electrolytes (GPEs) have been considered as potential candidates to replace LEs and improve the thermal safety of LIBs. In our study, a chemically cross-linked nonflammable GPE was synthesized and used in an LIB. A cross-linking agent, spirocyclic pentaerythritol diphosphate perfluorinated ether acrylate, comprising a phosphorus moiety and a fluoroether chain, was designed and synthesized to prepare a nonflammable cross-linked GPE. The obtained GPE effectively suppressed the deleterious reactions of the LE and imparted nonflammable characteristics. The pouch-type graphite/LiNi0.6Co0.2Mn0.2O2 cell with a nonflammable GPE delivered an initial discharge capacity of 146.7 mAh g-1 with a capacity retention of 71.1% after 300 cycles at 0.5 C and 55 °C. Moreover, the chemically cross-linked GPE exhibited excellent dimensional and thermal stability, which allowed for the safer operation of LIBs even under harsh conditions. This work provides guidelines for designing nonflammable electrolyte systems for advanced LIBs with high safety, enhanced thermal stability, and good cycling characteristics at elevated temperatures.

2.
J Phys Chem Lett ; 15(12): 3317-3322, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38520384

RESUMO

Acetonitrile (AN) electrolyte solutions display uniquely high ionic conductivities, of which the rationale remains a long-standing puzzle. This research delves into the solution species and ion conduction behavior of 0.1 and 3.0 M LiTFSI AN and propylene carbonate (PC) solutions via Raman and dielectric relaxation spectroscopies. Notably, LiTFSI-AN contains a higher fraction of free solvent uncoordinated to Li ions than LiTFSI-PC, resulting in a lower viscosity of LiTFSI-AN and facilitating a higher level of ion conduction. The abundant free solvent in LiTFSI-AN is attributed to the lower Li-solvation power of AN, but despite this lower Li-solvation power, LiTFSI-AN exhibits a level of salt dissociation comparable to that of LiTFSI-PC, which is found to be enabled by TFSI anions loosely bound to Li ions. This work challenges the conventional notion that high solvating power is a prerequisite for high-conductivity solvents, suggesting an avenue to explore optimal solvents for high-power energy storage devices.

3.
ACS Appl Mater Interfaces ; 14(49): 54688-54697, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458341

RESUMO

High-capacity Ni-rich LiNixCoyMn1-x-yO2 (NCM) has been investigated as a promising cathode active material for improving the energy density of lithium-ion batteries (LIBs); however, its practical application is limited by its structural instability and low thermal stability. In this study, we synthesized tetrakis(methacryloyloxyethyl)pyrophosphate (TMAEPPi) as a cathode electrolyte interphase (CEI) additive to enhance the cycling characteristics and thermal stability of the LiNi0.8Co0.1Mn0.1O2 (NCM811) material. TMAEPPi was oxidized to form a uniform Li+-ion-conductive CEI on the cathode surface during initial cycles. A lithium-ion cell (graphite/NCM811) employing a liquid electrolyte containing 0.5 wt % TMAEPPi exhibited superior capacity retention (82.2% after 300 cycles at a 1.0 C rate) and enhanced high-rate performance compared with the cell using a baseline liquid electrolyte. The TMAEPPi-derived CEI layer on NCM811 suppressed electrolyte decomposition and reduced the microcracking of the NCM811 particles. Our results reveal that TMAEPPi is a promising additive for forming stable CEIs and thereby improving the cycling performance and thermal stability of LIBs employing high-capacity NCM cathode materials.

4.
ACS Appl Mater Interfaces ; 12(17): 19553-19562, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32251586

RESUMO

Liquid electrolytes currently used in lithium-ion batteries have critical drawbacks such as high flammability, high reactivity toward electrode materials, and solvent leakage. To overcome these issues, most recent research has focused on synthesis and characterization of highly conductive gel-type polymer electrolytes containing large numbers of organic solvents in the polymer matrix. There are still many hurdles to overcome, however, before they can be applied to commercial-level lithium-ion batteries. Since a large amount of organic solvent is required to achieve high ionic conductivity, battery safety is not significantly enhanced. In our study, we synthesized highly conductive quasi-solid-state electrolytes (QSEs) containing an ionically conductive oligomer (polycaprolactone triacrylate) and a small amount of organic solvent by employing click chemistry. In the QSE, polycaprolactone participates in dissociation of lithium salt and migration of lithium ions, resulting in high ionic conductivity. The Li/LiNi0.6Co0.2Mn0.2O2 cell that used this QSE exhibited good cycling performance and enhanced thermal stability, and durability; no organic solvent leakage was observed even under high pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...