Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 85(4): 163-174, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34763616

RESUMO

Bisphenol F (BPF) is classified as a harmful substance by the U.S. Environmental Protection Agency. Although previous studies focused on human exposure to BPF via direct consumption or inhalation, few investigators assessed potential toxicological effects following skin contact. The aim of this study was to examine (1) the degree and pattern by which BPF is absorbed onto the skin in vivo, and (2) determination of toxicity and safety using the following tests: acute dermal; a 28-day repeat dermal; a skin irritation; an eye irritation; and a skin sensitization. As indicated by the amount of BPF remaining in the epidermis or dermis, data demonstrated that BPF was absorbed through the skin at a 26.5% rate. BPF penetrated the subcutaneous layer at a "fast rate" (Kp: 2.2E-02). Although no toxicological changes or local irritation were observed following skin exposure, BPF induced potent sensitization. In summary, the findings of this study showed that BPF penetrated and was absorbed into the skin at a high rate which was associated with enhanced chemical-induced skin sensitization and this may have significant implications following exposure of skin to BPF.


Assuntos
Compostos Benzidrílicos/toxicidade , Olho/efeitos dos fármacos , Fenóis/toxicidade , Pele/efeitos dos fármacos , Animais , Feminino , Humanos , Masculino , Coelhos , Ratos Sprague-Dawley , Absorção Cutânea , Testes de Toxicidade Aguda
2.
Toxicol Res ; 32(2): 159-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27123167

RESUMO

Crickets have been attracting considerable interest in the field of nutrition and toxicology due to the global exhaustion of food resulting from a growing population. The cricket is normally eaten in several countries after roasting, similar to the grasshopper; however, safety evaluation data on cricket powder is limited. Here, we performed general toxicity studies of cricket powder including a single, 2-week repeated dose range evaluation test, a 13-week repeated oral dose toxicity test in Sprague-Dawley rats, a single oral dose toxicity test in Beagle dogs, and a skin sensitization test in guinea pigs following the Organization for Economic Cooperation and Development test guidelines 406 and 408 in addition to Good Laboratory Practice. To investigate the NOAEL and target organs of cricket powder, Sprague-Dawley rats were allocated to 4 groups: vehicle control, 1,250 mg/kg, 2,500 mg/kg, 5,000 mg/kg dose test groups and cricket powder was administered over 13 weeks after single dose and dose range finding studies in rats based on the results of the single oral administration toxicity study in rats and Beagle dogs. The results of the study showed that the NOAEL of cricket powder was over 5,000 mg/kg for both sexes of rats without adverse effects in a 13-week repeated oral toxicity study and there was no skin hypersensitivity reaction. Therefore, our results reveal that crickets can be widely used as a new substitute food or nutrient resource.

3.
Nanotoxicology ; 9(5): 603-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25231190

RESUMO

In our previous studies of nanocalcium carbonate, in which we performed physicochemical analysis, genotoxicity, acute single-dose and repeated-dose 14-day oral toxicity testings in Sprague-Dawley (SD) rats, nanocalcium carbonate did not show a difference in toxicity compared to vehicle control. Here, we provide the first report of a repeated-dose 90-day oral toxicity test of nanocalcium carbonate in Sprague-Dawley rats, with physicochemical comparison of micro and nanocalcium carbonate. We find that the two particles differ in size, hydrodynamic size, and specific surface area, with no differences in components, crystalline structure and radical production. In terms of ionization ability, nanocalcium carbonate was slightly more ionized within 1% than microcalcium carbonate at pH 5 and pH 7. In the repeated-dose 90-day oral toxicity test of nanocalcium carbonate, there was no significant toxicity, and similar blood concentrations of Ca(2+) compared to the vehicle control group. Based on our results, although nanocalcium carbonate has different physicochemical properties, nanocalcium carbonate does not differ from microcalcium carbonate in terms of toxicity. Based on the results, we suggest that the no-observed-adverse-effect level (NOAEL) of nanocalcium carbonate is 1000 mg kg(-1) day(-1) in SD rats according to the maximum dose (OECD guideline 408). However, the NOAEL might be higher than 1000 mg kg(-1) day(-1) because there were no adverse effects revealed by consistent pathological findings or biochemical parameter changes. To justify a safe concentration of nanocalcium carbonate, which is a low toxicity chemical, more data is required on dose levels above 1000 mg kg(-1). Our findings may be useful for creating safety guidelines for the use nanocalcium carbonate.


Assuntos
Carbonato de Cálcio/toxicidade , Nanopartículas/toxicidade , Administração Oral , Animais , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacocinética , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Masculino , Nanopartículas/química , Nível de Efeito Adverso não Observado , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Propriedades de Superfície , Testes de Toxicidade Subcrônica
4.
Food Chem Toxicol ; 62: 308-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959102

RESUMO

Nano- and microcalcium provided from the KFDA were compared in terms of physico-chemical properties. Calcium samples were tested using EF-TEM and X-ray diffractometry to check for size/morphology and crystal formation, respectively. Two samples of nano- and microcalcium were selected for further evaluation by FE-SEM, DLS (nano-size, 200-500nm; agglomerate, >5 µm; micro-size, 1.5-30 µm), and electron spin resonance. Both samples were heterogeneous in size, existed as single crystal and aggregated form, and did not generate reactive oxygen species. The specific surface area of nano- and microcalcium measured by N2 Brunauere Emmette Teller method was 12.90±0.27 m(2)/g and 1.12±0.19 m(2)/g, respectively. Inductively coupled plasma optical emission spectrometry analysis revealed the release of 2-3 times more calcium ion from nano- compared to microcalcium at pH 5 and 7. Genotoxicity and acute single-dose and repeated-dose 14-day oral toxicity testing in SD rats performed to evaluate the safety of nanocalcium did not reveal toxicity. However, long-term monitoring will be required for an unequivocal conclusion. A nanocalcium dose of 1 g/kg is recommended as the maximum dose for repeated dose 13-week oral toxicity. Further studies could provide details of toxicity of nanocalcium on the repeated dose 13-week oral toxicity test.


Assuntos
Cálcio/farmacocinética , Nanopartículas Metálicas , Testes de Toxicidade/métodos , Administração Oral , Animais , Células CHO/efeitos dos fármacos , Cálcio/administração & dosagem , Cálcio/toxicidade , Cricetulus , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Concentração de Íons de Hidrogênio , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Ratos Sprague-Dawley , Testes de Toxicidade Aguda/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...