Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(2): 1692-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22630031

RESUMO

We investigated the properties of synthetically produced organic-inorganic hybrid coatings by a sol-gel process. The properties of organic-inorganic hybrid materials arise from the synergism between the properties of the individual components. One of the typical way to synthesize the organic-inorganic hybrid materials is to use silica and silanes. A colloidal silica sol was used as an inorganic material. Methyltrimethoxysilane and phenyltrimethoxysilane were used as the trifunctional organoalkoxysilanes. Hybrid sols of colloidal silica and silanes were synthesized as a function of reaction time and methyltrimethoxysilane/phenyltrimethoxysilane ratio by a sol-gel process. Physical properties of sol solutions such as stability, viscosity, and transmittance were investigated. The surface roughness and surface free energy of the coatings were also measured.

2.
J Nanosci Nanotechnol ; 10(10): 6992-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137840

RESUMO

Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...