Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 9(7): 1013-1018, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648613

RESUMO

The ionic conductivity of polymer electrolyte membranes (PEMs) is an essential parameter for their device applications. In water-swollen PEMs, protons and other ions are transferred through hydrophilic channels of a few nanometers in diameter at most. Thus, optimizing the chemical and physical properties of the channels can enhance the conductivity of PEMs. However, the factors controlling the conductivity have not been completely clarified. Here, we report that measurements taken near the channel walls by a special nuclear magnetic resonance technique with ≤1 nm spatial resolution showed the largest water diffusivity when ∼80% of hydrophilic sulfonic acid groups were blocked, but the proton conductivity was low. The water diffusivity was much less affected by differences in water content. Our results provide a concept for changing the properties of PEMs and a challenge to implement the improved diffusivity in a way that enhances net ion conductivity.

2.
Langmuir ; 35(50): 16624-16629, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747515

RESUMO

A free-standing ion-conductive gel is formed by spontaneous self-assembly of the amphiphilic ionic liquid 1-tetradecyl-3-methylimidazolium chloride (C14MIm·Cl) and the cross-linkable monomer 6-hexanediol diacrylate (HDODA) in a mixed solvent of 1-octene, 1-butanol, and water. The ionic conductivity of this ion gel is 24 mS cm-1 at 33 °C. To enhance the mechanical strength of the ion gels, the acrylate ionic liquid 1-(2-acryloyloxyundecyl)-3-methylimidazolium bromide (A-C11MIm·Br) was added, leading to significant morphological changes of the HDODA phase from spherical, ellipsoid, angular platelets to interconnected with increasing addition of the acrylate ionic liquid and consequent enhancement in the mechanical strength of the resulting ion gels. Small angle X-ray scattering data reveal that the ion gels are composed of bicontinuous phase. The formation of the anisotropic HDODA structures upon introduction of the acrylate ionic liquid was accompanied by a change of the bicontinuous phase to be undulated, which increased the ionic path through the formed film, resulting in reduced ionic conductivity. Such coaxial structured gels may be a promising route for developing highly ion-conductive as well as mechanically stable solid electrolyte systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...