Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(8): 5147-5158, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123594

RESUMO

Methane oxychlorination (MOC) is a promising reaction for the production of liquefied methane derivatives. Even though catalyst design is still in its early stages, the general trend is that benchmark catalyst materials have a redox-active site, with, e.g., Cu2+, Ce4+, and Pd2+ as prominent showcase examples. However, with the identification of nonreducible LaOCl moiety as an active center for MOC, it was demonstrated that a redox-active couple is not a requirement to establish a high activity. In this work, we show that Mg2+-Al3+-based mixed-metal oxide (MMO) materials are highly active and stable MOC catalysts. The synergistic interaction between Mg2+ and Al3+ could be exploited due to the fact that a homogeneous distribution of the chemical elements was achieved. This interaction was found to be crucial for the unexpectedly high MOC activity, as reference MgO and γ-Al2O3 materials did not show any significant activity. Operando Raman spectroscopy revealed that Mg2+ acted as a chlorine buffer and subsequently as a chlorinating agent for Al3+, which was the active metal center in the methane activation step. The addition of the redox-active Eu3+ to the nonreducible Mg2+-Al3+ MMO catalyst enabled further tuning of the catalytic performance and made the EuMg3Al MMO catalyst one of the most active MOC catalyst materials reported so far. Combined operando Raman/luminescence spectroscopy revealed that the chlorination behavior of Mg2+ and Eu3+ was correlated, suggesting that Mg2+ also acted as a chlorinating agent for Eu3+. These results indicate that both redox activity and synergistic effects between Eu, Mg, and Al are required to obtain high catalytic performance. The importance of elemental synergy and redox properties is expected to be translatable to the oxychlorination of other hydrocarbons, such as light alkanes, due to large similarities in catalytic chemistry.

2.
Angew Chem Int Ed Engl ; 61(52): e202211991, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36328981

RESUMO

Often the reactor or the reaction medium temperature is reported in the field of heterogeneous catalysis, even though it could vary significantly from the reactive catalyst temperature. The influence of the catalyst temperature on the catalytic performance and vice versa is therefore not always accurately known. We here apply EuOCl as both solid catalyst and thermometer, allowing for operando temperature determination. The interplay between reaction conditions and the catalyst temperature dynamics is studied. A maximum temperature difference between the catalyst and oven of +16 °C was observed due to the exothermicity of the methane oxychlorination reaction. Heat dissipation by radiation appears dominating compared to convection in this set-up, explaining the observed uniform catalyst bed temperature. Application of operando catalyst thermometry could provide a deeper mechanistic understanding of catalyst performances and allow for safer process operation in chemical industries.

3.
ACS Org Inorg Au ; 2(4): 359-369, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35942278

RESUMO

In the context of cross-coupling chemistry, the competition between the cross-coupling path itself and the oxidative homocoupling of the nucleophile is a classic issue. In that case, the electrophilic partner acts as a sacrificial oxidant. We investigate in this report the factors governing the cross- versus homocoupling distribution using aryl nucleophiles ArMgBr and (hetero)aryl electrophiles Ar'Cl in the presence of an iron catalyst. When electron-deficient electrophiles are used, a key transient heteroleptic [Ar2Ar'FeII]- complex is formed. DFT calculations show that an asynchronous two-electron reductive elimination follows, which governs the selective evolution of the system toward either a cross- or homocoupling product. Proficiency of the cross-coupling reductive elimination strongly depends on both π-accepting and σ-donating effects of the FeII-ligated Ar' ring. The reactivity trends discussed in this article rely on two-electron elementary steps, which are in contrast with the usually described tendencies in iron-mediated oxidative homocouplings which involve single-electron transfers. The results are probed by paramagnetic 1H NMR spectroscopy, experimental kinetics data, and DFT calculations.

4.
ACS Catal ; 12(9): 5698-5710, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35557710

RESUMO

The direct conversion of CH4 into fuels and chemicals produces less waste, requires smaller capital investments, and has improved energy efficiency compared to multistep processes. While the methane oxychlorination (MOC) reaction has been given little attention, it offers the potential to achieve high CH4 conversion levels at high selectivities. In a continuing effort to design commercially interesting MOC catalysts, we have improved the catalyst design of EuOCl by the partial replacement of Eu3+ by La3+. A set of catalytic solid solutions of La3+ and Eu3+ (i.e., La x Eu1-x OCl, where x = 0, 0.25, 0.50, 0.75, and 1) were synthesized and tested in the MOC reaction. The La3+-Eu3+ catalysts exhibit an increased CH3Cl selectivity (i.e., 54-66 vs 41-52%), a lower CH2Cl2 selectivity (i.e., 8-24 vs 18-34%), and a comparable CO selectivity (i.e., 11-28 vs 14-28%) compared to EuOCl under the same reaction conditions and varying HCl concentrations in the feed. The La3+-Eu3+ catalysts possessed a higher CH4 conversion rate than when the individual activities of LaOCl and EuOCl are summed with a similar La3+/Eu3+ ratio (i.e., the linear combination). In the solid solution, La3+ is readily chlorinated and acts as a chlorine buffer that can transfer chlorine to the active Eu3+ phase, thereby enhancing the activity. The improved catalyst design enhances the CH3Cl yield and selectivity and reduces the catalyst cost and the separation cost of the unreacted HCl. These results showcase that, by matching intrinsic material properties, catalyst design can be altered to overcome reaction bottlenecks.

5.
ACS Catal ; 11(16): 10574-10588, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34484853

RESUMO

Commercialization of CH4 valorization processes is currently hampered by the lack of suitable catalysts, which should be active, selective, and stable. CH4 oxychlorination is one of the promising routes to directly functionalize CH4, and lanthanide-based catalysts show great potential for this reaction, although relatively little is known about their functioning. In this work, a set of lanthanide oxychlorides (i.e., LnOCl with Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho) and Er- and Yb-based catalysts were synthesized, characterized, and tested. All lanthanide-based catalysts can directly activate CH4 into chloromethanes, but their catalytic properties differ significantly. EuOCl shows the most promising catalytic activity and selectivity, as very high conversion levels (>30%) and chloromethane selectivity values (>50%) can be reached at moderate reaction temperatures (∼425 °C). Operando Raman spectroscopy revealed that the chlorination of the EuOCl catalyst surface is rate-limiting; hence, increasing the HCl concentration improves the catalytic performance. The CO selectivity could be suppressed from 30 to 15%, while the CH4 conversion more than doubled from 11 to 24%, solely by increasing the HCl concentration from 10 to 60% at 450 °C. Even though more catalysts reported in this study and in the literature show a negative correlation between the S CO and HCl concentration, this effect was never as substantial as observed for EuOCl. EuOCl has promising properties to bring the oxychlorination one step closer to an economically viable CH4 valorization process.

6.
Org Lett ; 7(10): 1943-6, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15876025

RESUMO

Iron-catalyzed homo-coupling of simple and functionalized arylmagnesium reagents is described. The reaction is highly chemoselective (CN, COOEt and NO(2) groups are tolerated). The procedure was used to perform intramolecular couplings. This cyclization reaction is the key step of the total synthesis of the N-methylcrinasiadine.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Ferro/química , Magnésio/química , Catálise , Ciclização , Compostos Heterocíclicos de 4 ou mais Anéis/análise , Compostos Heterocíclicos de 4 ou mais Anéis/química , Indicadores e Reagentes , Liliaceae/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...