Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 386(6621): 154-6, 1997 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11536797

RESUMO

The rotation rates of asteroids, which are deduced from periodic fluctuations in their brightnesses, are controlled by mutual collisions. The link between asteroid spin and collision history is usually made with reference to impact experiments on centimetre-scale targets, where material strength governs the impact response. Recent work, however, indicates that for objects of the size of most observed asteroids (> or = 1 km in diameter), gravity rather than intrinsic strength controls the dynamic response to collisions. Here we explore this idea by modelling the effect of impacts on large gravitating bodies. We find that the fraction of a projectile's angular momentum that is retained by a target asteroid is both lower and more variable than expected from laboratory experiments, with spin evolution being dominated by 'catastrophic' collisions that eject approximately 50 per cent of the target's mass. The remnant of an initially non-rotating silicate asteroid that suffers such a collision rotates at a rate of approximately 2.9 per day, which is close to the observed mean asteroid rotation rate of approximately 2.5 d-1. Moreover, our calculations suggest that the observed trend in the mean spin frequency for different classes of asteroids (2.2 d-1 for C-type asteroids, 2.5 d-1 for S-type, and 4.0 d-1 for M-type) is due to increasing mean density, rather than increasing material strength.


Assuntos
Gravitação , Planetas Menores , Rotação , Simulação por Computador , Evolução Planetária , Meio Ambiente Extraterreno , Cinética
2.
Earth Planet Sci Lett ; 98(2): 245-61, 1990 May.
Artigo em Inglês | MEDLINE | ID: mdl-11538171

RESUMO

The degree of impact-induced devolatilization of nonporous serpentine, porous serpentine, and deuterium-enriched serpentine was investigated using two independent experimental methods, the gas recovery method and the solid recovery method, yielding consistent results. The gas recovery method enables determination of the chemical and hydrogen isotopic composition of the recovered gases. Experiments on deuterium-enriched serpentine unambiguously identify the samples as the source of the recovered gases, as opposed to other possible contaminants. For shock pressures near incipient devolatilization (Pinitial = 5.0 GPa), the hydrogen isotopic composition of the evolved gas is similar to that of the starting material. For higher shock pressures the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. The hydrogen isotopic fractionation between the evolved gas and the residual solid indicates nonequilibrium, kinetic control of gas-solid isotopic ratios. In contrast, gaseous H2O-H2 isotopic fractionation suggests high temperature (800-1300 K) isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition (i.e., shear bands). Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can affect the distribution of hydrogen isotopes of planetary bodies during accretion, leaving the interiors enriched in deuterium. The significance of this process for planetary development depends on the models used for extrapolation of the observed isotopic fractionation to devolatilizations greater than those investigated experimentally and assumptions about timing and rates of protoatmosphere loss, frequency of multiple impacts, and rates of gas-solid or gas-melt isotopic re-equilibration. A simple model indicates that substantial planetary interior enrichments of D/H relative to that of the incident material can result from impact-induced hydrogen fractionation during accretion.


Assuntos
Asbestos Serpentinas/química , Geologia/métodos , Hidrogênio/análise , Sistema Solar , Deutério/análise , Planeta Terra , Gases/análise , Isótopos , Planetas , Temperatura , Volatilização , Água/análise
3.
Science ; 236(4798): 181-2, 1987 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17789782

RESUMO

The melting curve of iron, the primary constituent of Earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 gigapascals) is 4800 +/- 200 K. whereas at the inner core-outer core boundary (330 gigapascals), it is 7600 +/- 500 K. Corrected for melting point depression resulting from the presence of impurities, a melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at Earth's center are inferred. This latter value is the first experimental upper bound on the temperature at Earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.

4.
Science ; 234(4774): 346-9, 1986 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17834533

RESUMO

Cratering flow calculations for a series of oblique to normal (10 degrees to 90 degrees ) impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether or not the gas produced upon shock-vaporizing both projectile and target material would form a downstream jet that could entrain and propel SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet have been accelerated to speeds in excess of the Martian escape velocity (more than 5 kilometers per second). Two-dimensional finite difference calculations were performed that show that at highly probable impact velocities (7.5 kilometers per second), vapor plume jets are produced at oblique impact angles of 25 degrees to 60 degrees and have speeds as great as 20 kilometers per second. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 kilometer, the resulting vapor jets have densities of 0.1 to 1 gram per cubic centimeter. These jets can entrain Martian surface rocks and accelerate them to velocities greater than 5 kilometers per second. This mechanism may launch SNC meteorites to earth.

5.
Science ; 226(4678): 1071-4, 1984 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17839996

RESUMO

Densities of molten silicates at high pressures (up to approximately 230 kilobars) have been measured for the first time with shock-wave techniques. For a model basaltic composition (36 mole percent anorthite and 64 mole percent diopside), a bulk modulus K(s), of approximately 230 kilobars and a pressure derivative (dK(s)/dP) of approximately 4 were derived. Some implications of these results are as follows: (i) basic to ultrabasic melts become denser than olivine-and pyroxene-rich host mantle at pressures of 60 to 100 kilobars; (ii) there is a maximum depth from which basaltic melt can rise within terrestrial planetary interiors; (iii) the slopes of silicate solidi [(dT(m)/dP), where T(m) is the temperature] may become less steep at high pressures; and (iv) enriched mantle reservoirs may have developed by downward segregation of melt early in Earth history.

6.
Science ; 207(4435): 1035-41, 1980 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17759812

RESUMO

Shock wave techniques have been used to investigate the pressuredensity relations of metals, silicates, and oxides over the entire range of pressures present in the earth (3.7 x 10(6) bars at the center). In many materials of geophysical interest, such as iron, wüstite, calcium oxide, and forsterite, major shock-induced phase changes dominate the compression behavior below pressures of 10(6) bars. The shock wave data for the high-pressure phases of these minerals lead to important inferences about the composition of the lower mantle and outer, liquid core of the earth. The lower mantle of the earth appears to have a slightly higher density than is inferred to correspond to the behavior of an olivine-rich assembiage of the same composition as the upper mantle. The core has a density some 10 percent less than that of pure iron and may have 9 to 12 percent sulfur or about 8 percent oxygen by weight.

7.
Rev Sci Instrum ; 50(11): 1421, 1979 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18699402

RESUMO

A system for measurement of the spectral radiance of materials shocked to high pressures ( approximately 100 GPa) by impact using a light gas gun is described. Thermal radiation from the sample is sampled at six wavelength bands in the visible spectrum, and each signal is separately detected by solid-state photodiodes, and recorded with a time resolution of approximately 10 ns. Interpretation of the records in terms of temperature of transparent sample materials is discussed. Results of a series of exploratory experiments with metals are also given. Shock temperatures in the range 4000-8000 K have been reliably measured. Spectral radiance and temperatures have been determined with uncertainties of 2%.

8.
Science ; 206(4420): 829-30, 1979 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17820761

RESUMO

Volume and structural data obtained by shock-wave and diamond-cell techniques demonstrate that calcium oxide transforms from the B1 (sodium chloride type) to the B2 (cesium chloride type) structure at 60 to 70 gigapascals (0.6 to 0.7 megabar) with a volume decrease of 11 percent. The agreement between the shockwave and diamond-cell results independently confirms the ruby-fluorescence pressure scale to about 65 gigapascals. The shock-wave data agree closely with ultrasonic measurements on the B1 phase and also agree satisfactorily with equations of state derived from ab initio calculations. The discovery of this B1-B2 transition is significant in that it allows considerable enrichment of calcium components in the earth's lower mantle, which is consistent with inhomogeneous accretion theories.

9.
Science ; 198(4323): 1249-51, 1977 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-17741703

RESUMO

The calculated energy efficiency of mass ejection for iron and anorthosite objects striking an anorthosite planet at speeds of 5 to 45 kilometers per second decreases with increasing impact velocity at low escape velocities. At escape velocities of >10(5) and >2 x 10(4) centimeters per second, respectively, the slower impactors produce relatively less ejecta for a given impact energy. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 kilometers per second for anorthosite objects and approximately 25, 35, and 40 kilometers per second for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury, and Mars.

10.
Science ; 197(4302): 457-9, 1977 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-17783244

RESUMO

Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg(0.88)Fe(0.12))(2)SiO(4), recovered from peak pressures of about 56 x 10(9) pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation of olivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 x 10(9) pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...