Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38384746

RESUMO

Mobile apps that use location data are pervasive, spanning domains such as transportation, urban planning and healthcare. Important use cases for location data rely on statistical queries, e.g., identifying hotspots where users work and travel. Such queries can be answered efficiently by building histograms. However, precise histograms can expose sensitive details about individual users. Differential privacy (DP) is a mature and widely-adopted protection model, but most approaches for DP-compliant histograms work in a data-independent fashion, leading to poor accuracy. The few proposed data-dependent techniques attempt to adjust histogram partitions based on dataset characteristics, but they do not perform well due to the addition of noise required to achieve DP. In addition, they use ad-hoc criteria to decide the depth of the partitioning. We identify density homogeneity as a main factor driving the accuracy of DP-compliant histograms, and we build a data structure that splits the space such that data density is homogeneous within each resulting partition. We propose a self-tuning approach to decide the depth of the partitioning structure that optimizes the use of privacy budget. Furthermore, we provide an optimization that scales the proposed split approach to large datasets while maintaining accuracy. We show through extensive experiments on large-scale real-world data that the proposed approach achieves superior accuracy compared to existing approaches.

2.
IEEE Int Conf Mob Data Manag ; 2022: 361-366, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36345435

RESUMO

Accurately monitoring the number of individuals inside a building is vital to limiting COVID-19 transmission. Low adoption of contact tracing apps due to privacy concerns has increased pervasiveness of passive digital tracking alternatives. Large arrays of WiFi access points can conveniently track mobile devices on university and industry campuses. The CrowdMap system employed by the University of Southern California enables such tracking by collecting aggregate statistics from connections to access points around campus. However, since these devices can be used to infer the movement of individuals, there is still a significant risk that even aggregate occupancy statistics will violate the location privacy of individuals. We examine the use of Differential Privacy in reporting statistics from this system as measured using point and range count queries. We propose discretization schemes to model the positions of users given only user connections to WiFi access points. Using this information we are able to release accurate counts of occupants in areas of campus buildings such as labs, hallways, and large discussion halls with minimized risk to individual users' privacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...