Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 136: 303-309, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33744821

RESUMO

Pasteurella multocida is an important zoonotic pathogen that causes multiple diseases in both animals and humans. Test of good immunogenic proteins is beneficial for vaccine development and disease control. In the present study, we determined four novel immunogenic proteins of P. multocida by using 2-DE MALDI-TOF MS with immune serum. These four proteins included a trimethylamine-N-oxide reductase TorA, a translation elongation factor Ts, a phosphoglyceromutase PGAM, and a peroxiredoxin PrX. Among these proteins, TorA, Prx, and PGAM were successfully expressed by using E. coli. Western-blotting assays showed that recombinant TorA, Prx, and/or PGAM displayed good reactions with infectious sera of P. multocida serogroups A, B, D and F. Immunization of either rTorA, rPrx, and/or rPGAM induced significantly high levels of antibodies as well as IFN-γ, IL-4 and IL-10 in mice (P < 0.01). Protective efficacy tests revealed that vaccination of either rTorA, rPrx, and/or rPGAM protected 60% ~ 80% of the tested mice against the challenge with P. multocida field isolate. Our results obtained from the present study suggest that these three proteins could be tested as good vaccine candidates against P. multocida infections.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Imunização Passiva/veterinária , Pasteurella multocida/imunologia , Animais , Eletroforese em Gel Bidimensional/veterinária , Soros Imunes/imunologia , Espectrometria de Massas/veterinária , Camundongos , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/veterinária , Suínos , Doenças dos Suínos/microbiologia
2.
Vaccines (Basel) ; 7(4)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690029

RESUMO

Bordetella bronchiseptica is a leading cause of swine respiratory disorders which depict a great threat to well-flourished porcine industry. Vaccination remains an effective way for the prevention of B. bronchiseptica infections, as live B. bronchiseptica vaccines possess many advantages compared to inactivated vaccines and/or sub-unit vaccines, however, their safety is not up to the mark. In present study, we constructed marker-free aroA/bscN double deleted B. bronchiseptica QH09 through two-step homologous recombination strategy. Our data showed that QH09 attenuated virulence to mice compared with the parent aroA deleted B. bronchiseptica QH0814. We also found that QH09 meets the vaccine safety standards, upon challenge in piglets, did not cause any visible clinical signs or lesions on organs. Finally, we demonstrated that vaccination of QH09 activated the systemic as well as the mucosal immunity in pigs and provided protection against lethal bacterial challenge. These findings suggest that the aroA/bscN double deleted B. bronchiseptica QH09 may be an effective vaccine candidate, with safety assurance of animals against B. bronchiseptica infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...