Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298005

RESUMO

Coal gasification fine slag (CFS) is a solid contaminant produced by an entrained flow gasifier, which pollutes fields and the air in the long term. CFS is a potential polymer reinforcement filler and has been used in polypropylene and acrylonitrile butadiene styrene resins. Coal gasification fine slag mesoporous silica (FS-SiO2) was prepared by acid leaching, calcination, and pH adjustment, with a larger specific surface area and less surface hydroxyl compared to the commercial precipitated silica (P-silica). The cure characteristics, crosslink density, mechanical properties, the morphology of the tensile fractures, dynamic mechanics, and rubber processing of the prepared styrene butadiene rubber (SBR) composites filled with P-silica and FS-SiO2 were analyzed, respectively. The results indicated that FS-SiO2 was dispersed more uniformly in the SBR matrix than P-silica owing to its smaller amount of surface hydroxyl and spherical structure, resulting in a better mechanical performance and wet skid resistance. In particular, the SBR composites with a filler pH of 6.3 exhibited the highest crosslink density and tensile strength, being superior to commercial P-silica. Significantly, the curing time decreased with the increase in the pH of FS-SiO2, which caused the rubber processing to be more efficient. This strategy can reduce the cost of rubber composites and the environmental pollution caused by CFS.

2.
Environ Sci Pollut Res Int ; 29(59): 88894-88907, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35841506

RESUMO

Coal gasification fine slag is a by-product of the entrained-flow gasifier, which has caused some environmental pollution. Through acid dissolution and calcination at different temperatures, mesoporous spherical silica/porous carbon composite filler was prepared using coal gasification fine slag. The particle size and specific surface area of the composite filler decreased with the decrease of unburned carbon content. The analysis of X-ray photoelectron spectroscopy (XPS) indicated the decrease of oxygen-containing functional groups and the increase of C-C groups with the decrease of the content of carbon. The effects of mesoporous spherical silica/porous carbon with different carbon content on the comprehensive properties of filled polypropylene (PP) were studied. The tensile strength and interface interaction increased at first and then decreased with the decrease of carbon content, due to the synergistic effect of mesoporous spherical silica and rough amorphous carbon. The scanning electron microscope showed that the composite filler with the carbon content of 14.47 wt.% at the calcination temperature of 450 °C had the best compatibility with the matrix. Thermodynamic analysis of the PP composites indicated that thermal insulation properties and thermal stability improved with the incorporation of the composite filler. Differential scanning calorimetry (DSC) testing indicated the highest crystallinity of the matrix corresponding to the best comprehensive performances of the composites. XRD patterns revealed that the cooperation of fillers brought characteristic peaks and did not change the primary crystal structure of PP. Simultaneously, heavy calcium powders (CC) were used as comparative fillers, and the overall properties of the PP composites filled with the composite filler were better compared to those of the CC-filled PP composite. The results illustrated that mesoporous spherical silica/porous carbon particles can completely replace CC used in the PP composites, which can be used in auto bumpers, plastic pipes, display cases, and car air deflectors. The CGFS can be processed into a plastic filler for substituting heavy calcium powder particles, which can solve the environmental pollution caused by the accumulation of solid waste.

3.
J Hazard Mater ; 384: 121347, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606254

RESUMO

Deodorizing materials are often restricted from large-scale industrial production due to the high preparation cost. By utilizing the simple acid leaching technology, this study made use of the coal gasification fine slag (FS) as raw material to prepare a cost effective FS-based deodorant (FSD) with a specific surface area of 393 m2 g-1 and a pore volume of 0.405 cm3 g-1. The propane adsorption test on FSD showed the maximum adsorption capacity to be as high as 121.61 mg g-1 at 273 K. The partition coefficient values at 10% and 100% breakthrough (BT) for FSD to adsorb propane were 1.5 × 10-3 and 3.2 × 10-4 mol kg-1 Pa-1, respectively. Furthermore, the FSD was applied in the removal of volatile organic compounds (VOCs) pollutants from polypropylene resin (PP). It showed that the deodorizing effect of the FSD was nearly three times as good as the commonly used zeolite deodorants, which was able to decrease 50 percent of the VOCs volatilization amount in PP resin. Moreover, the FSD can better strengthen the mechanical properties of PP resin. This work provides a new method for the industrial production of deodorants as well as a new direction for the recycle of coal gasification wastes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...