Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Ther Methods Clin Dev ; 4: 115-125, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28344997

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal degenerative disorder of motor neurons (MNs). Embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) now help us to understand the pathomechanisms of ALS via disease modeling. Various methods to differentiate ESCs/iPSCs into MNs by the addition of signaling molecules have been reported. However, classical methods require multiple steps, and newer simple methods using the transduction of transcription factors run the risk of genomic integration of the vector genes. Heterogeneity of the expression levels of the transcription factors also remains an issue. Here we describe a novel approach for differentiating human and mouse ESCs/iPSCs into MNs using a single Sendai virus vector encoding three transcription factors, LIM/homeobox protein 3, neurogenin 2, and islet-1, which are integration free. This single-vector method, generating HB9-positive cells on day 2 from human iPSCs, increases the ratio of MNs to neurons compared to the use of three separate Sendai virus vectors. In addition, the MNs derived via this method from iPSCs of ALS patients and model mice display disease phenotypes. This simple approach significantly reduces the efforts required to generate MNs, and it provides a useful tool for disease modeling.

2.
Sci Rep ; 6: 33427, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641902

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Cellular AD models derived from human pluripotent stem cells are promising tools in AD research. We recently developed human embryonic stem cell-derived AD models which overexpress mutant Presenilin1 genes, and which exhibit AD phenotypes, including synaptic dysfunction. In this study, we found that our AD models showed reduced levels of RAB3A and SV2B proteins in the pre-synapses, which is a possible cause of electrophysiological abnormalities. Through the screening of chemical compounds using our AD models, we have identified Aß peptide inhibitors which decrease the concentration of Aß in culture supernatant. Among these, BMS-708163 and Nilotinib were found to improve the expression levels of RAB3A and SV2B proteins and to recover the electrophysiological function in our AD models. These results suggest that the AD models we developed are promising materials for the discovery of AD drugs that target the expression of pre-synaptic proteins and synaptic function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Células-Tronco Embrionárias Humanas/metabolismo , Modelos Biológicos , Oxidiazóis/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Sinapses/fisiologia , Peptídeos beta-Amiloides/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Proteínas rab3 de Ligação ao GTP/metabolismo
3.
Biochem Biophys Res Commun ; 469(3): 587-92, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26687948

RESUMO

Cellular disease models are useful tools for Alzheimer's disease (AD) research. Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), are promising materials for creating cellular models of such diseases. In the present study, we established cellular models of AD in hESCs that overexpressed the mutant Presenilin 1 (PS1) gene with the use of a site-specific gene integration system. The overexpression of PS1 did not affect the undifferentiated status or the neural differentiation ability of the hESCs. We found increases in the ratios of amyloid-ß 42 (Aß42)/Aß40 and Aß43/Aß40. Furthermore, synaptic dysfunction was observed in a cellular model of AD that overexpressed mutant PS1. These results suggest that the AD phenotypes, in particular, the electrophysiological abnormality of the synapses in our AD models might be useful for AD research and drug discovery.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/metabolismo , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/patologia , Humanos , Mutação , Presenilina-1/genética , Regulação para Cima
4.
Stem Cell Res ; 15(3): 459-468, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26413785

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative motor neuron (MN) disease. The gene encoding superoxide dismutase 1 (SOD1) is a causative element of familial ALS. Animal ALS models involving SOD1 gene mutations are widely used to study the underlying mechanisms of disease and facilitate drug discovery. Unfortunately, most drug candidates have failed in clinical trials, potentially due to species differences among rodents and humans. It is unclear, however, whether there are different responses to drugs among the causative genes of ALS or their associated mutations. In this study, to evaluate different SOD1 mutations, we generated SOD1-ALS models derived from human embryonic stem cells with identical genetic backgrounds, except for the overexpression of mutant variants of SOD1. The overexpression of mutant SOD1 did not affect pluripotency or MN differentiation. However, mutation-dependent reductions in neurite length were observed in MNs. Moreover, experiments investigating the effects of specific compounds revealed that each ALS model displayed different responses with respect to MN neurite length. These results suggest that SOD1 mutations could be classified based the response of MNs to drug treatment. This classification could be useful for the development of mutant-specific strategies for drug discovery and clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/genética , Neurônios Motores/efeitos dos fármacos , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Embrionárias Humanas , Humanos , Mutação , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
6.
Stem Cell Reports ; 2(5): 734-45, 2014 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-24936458

RESUMO

Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.


Assuntos
Células-Tronco Pluripotentes/citologia , Polímeros/química , Técnicas de Cultura de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Cariotipagem , Microscopia Eletrônica de Transmissão , Células-Tronco Pluripotentes/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Cell Rep ; 6(6): 1165-1174, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24613351

RESUMO

A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs) and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1]) that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1) and ABCG2 (BCRP), both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.


Assuntos
Corantes Fluorescentes/química , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/citologia , Sondas Moleculares/química , Células-Tronco Pluripotentes/química , Células-Tronco Pluripotentes/citologia , Animais , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência/métodos
9.
Stem Cells Transl Med ; 1(5): 396-402, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23197818

RESUMO

The generation of amyotrophic lateral sclerosis (ALS) disease models is an important subject for investigating disease mechanisms and pharmaceutical applications. In transgenic mice, expression of a mutant form of superoxide dismutase 1 (SOD1) can lead to the development of ALS that closely mimics the familial type of ALS (FALS). Although SOD1 mutant mice show phenotypes similar to FALS, dissimilar drug responses and size differences limit their usefulness to study the disease mechanism(s) and identify potential therapeutic compounds. Development of an in vitro model system for ALS is expected to help in obtaining novel insights into disease mechanisms and discovery of therapeutics. We report the establishment of an in vitro FALS model from human embryonic stem cells overexpressing either a wild-type (WT) or a mutant SOD1 (G93A) gene and the evaluation of the phenotypes and survival of the spinal motor neurons (sMNs), which are the neurons affected in ALS patients. The in vitro FALS model that we developed mimics the in vivo human ALS disease in terms of the following: (a) selective degeneration of sMNs expressing the G93A SOD1 but not those expressing the WT gene; (b) susceptibility of G93A SOD1-derived sMNs to form ubiquitinated inclusions; (c) astrocyte-derived factor(s) in the selective degeneration of G93A SOD1 sMNs; and (d) cell-autonomous, as well as non-cell-autonomous, dependent sMN degeneration. Thus, this model is expected to help unravel the disease mechanisms involved in the development of FALS and also lead to potential drug discoveries based on the prevention of neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Neurônios Motores/citologia , Mutação/genética , Medula Espinal/citologia , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/etiologia , Animais , Células-Tronco Embrionárias/fisiologia , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Superóxido Dismutase-1
10.
Cell Rep ; 2(5): 1448-60, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23103164

RESUMO

Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.


Assuntos
Benzotiazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Miócitos Cardíacos/citologia , Fenilpropionatos/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Benzotiazóis/química , Células Cultivadas , Células HEK293 , Haplorrinos , Humanos , Fenilpropionatos/química , Células-Tronco Pluripotentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
11.
Mol Ther ; 20(2): 424-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22146343

RESUMO

Low efficiencies of gene targeting via homologous recombination (HR) have limited basic research and applications using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Here, we show highly and equally efficient gene knockout and knock-in at both transcriptionally active (HPRT1, KU80, LIG1, LIG3) and inactive (HB9) loci in these cells using high-capacity helper-dependent adenoviral vectors (HDAdVs). Without the necessity of introducing artificial DNA double-strand breaks, 7-81% of drug-resistant colonies were gene-targeted by accurate HR, which were not accompanied with additional ectopic integrations. Even at the motor neuron-specific HB9 locus, the enhanced green fluorescent protein (EGFP) gene was accurately knocked in in 23-57% of drug-resistant colonies. In these clones, induced differentiation into the HB9-positive motor neuron correlated with EGFP expression. Furthermore, HDAdV infection had no detectable adverse effects on the undifferentiated state and pluripotency of hESCs and hiPSCs. These results suggest that HDAdV is one of the best methods for efficient and accurate gene targeting in hESCs and hiPSCs and might be especially useful for therapeutic applications.


Assuntos
Adenoviridae/genética , Células-Tronco Embrionárias/metabolismo , Vetores Genéticos/genética , Recombinação Homóloga , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos Nucleares/genética , Linhagem Celular , DNA Ligase Dependente de ATP , DNA Ligases/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Ordem dos Genes , Marcação de Genes , Heterozigoto , Humanos , Hipoxantina Fosforribosiltransferase/genética , Células-Tronco Pluripotentes Induzidas/citologia , Autoantígeno Ku , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas de Xenopus
12.
J Biomol Screen ; 16(4): 405-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21364087

RESUMO

Familial amyotrophic lateral sclerosis (fALS) accounts for 10% of ALS cases, and about 25% of fALS cases are due to mutations in superoxide dismutase 1 (SOD1). Mutant SOD1-mediated ALS is caused by a gain of toxic function of the mutant protein, and the SOD1 level in nonneuronal neighbors, including astrocytes, determines the progression of ALS (non-cell-autonomous toxicity). Therefore, the authors hypothesized that small molecules that reduce SOD1 protein levels in astrocytes might slow the progression of mutant SOD1-mediated ALS. They developed and optimized a cell-based, high-throughput assay to identify low molecular weight compounds that decrease SOD1 expression transcriptionally in human astrocyte-derived cells. Screening of a chemical library of 9600 compounds with the assay identified two hit compounds that selectively and partially downregulate SOD1 expression in a dose-dependent manner, without any detectable cellular toxicity. Western blot analysis showed that one hit compound significantly decreased the level of endogenous SOD1 protein in H4 cells, with no reduction in expression of ß-actin. The assay developed here provides a powerful strategy for discovering novel lead molecules for treating familial SOD1-mediated ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Superóxido Dismutase/metabolismo , Linhagem Celular , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Regiões Promotoras Genéticas/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1
13.
Nihon Rinsho ; 69(12): 2109-13, 2011 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-22242306

RESUMO

Research using human embryonic stem cell (hESC) lines has expanded dramatically because of two attractive capacity; self-renewal and differentiation into almost all cell types. For therapeutic purposes, many researchers are trying to establish methods for maintaining pluripotency in defined xeno-free conditions and scalable culture systems. Banking of hESC lines is important for the wide spread of personalized cell therapy and transplantation. We introduced the ongoing clinical trials using hESC-derived cells in patients with subacute spinal cord injury and Stargardt's macular dystrophy. We also discussed opportunities and an example for the use of hESC in drug discovery. Finally, we introduced transgenic hESC as a disease model.


Assuntos
Células-Tronco Embrionárias , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Embrionárias/transplante , Humanos , Bancos de Tecidos
14.
Nucleic Acids Res ; 38(7): e96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20071742

RESUMO

Random integration is one of the more straightforward methods to introduce a transgene into human embryonic stem (ES) cells. However, random integration may result in transgene silencing and altered cell phenotype due to insertional mutagenesis in undefined gene regions. Moreover, reliability of data may be compromised by differences in transgene integration sites when comparing multiple transgenic cell lines. To address these issues, we developed a genetic manipulation strategy based on homologous recombination and Cre recombinase-mediated site-specific integration. First, we performed gene targeting of the hypoxanthine phosphoribosyltransferase 1 (HPRT) locus of the human ES cell line KhES-1. Next, a gene-replacement system was created so that a circular vector specifically integrates into the targeted HPRT locus via Cre recombinase activity. We demonstrate the application of this strategy through the creation of a tetracycline-inducible reporter system at the HPRT locus. We show that reporter gene expression was responsive to doxycycline and that the resulting transgenic human ES cells retain their self-renewal capacity and pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Marcação de Genes/métodos , Loci Gênicos , Transgenes , Linhagem Celular , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Hipoxantina Fosforribosiltransferase/genética , Recombinação Genética
15.
J Cell Physiol ; 222(1): 127-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19780023

RESUMO

During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3-fold, fold discovery rate (FDR) >0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression, and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells.


Assuntos
Decídua/metabolismo , Perfilação da Expressão Gênica , Células Estromais/citologia , Células Estromais/metabolismo , Animais , Diferenciação Celular/genética , Decídua/citologia , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Regulação para Cima/genética
16.
PLoS One ; 4(8): e6722, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19701462

RESUMO

BACKGROUND: There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs) from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs) are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods. METHODS/PRINCIPAL FINDINGS: We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC) clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA) and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment. CONCLUSIONS AND SIGNIFICANCE: The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Neurônios Motores/citologia , Animais , Técnicas de Cocultura , Haplorrinos , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
DNA Res ; 16(1): 73-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19112179

RESUMO

Biologists rely on morphology, function and specific markers to define the differentiation status of cells. Transcript profiling has expanded the repertoire of these markers by providing the snapshot of cellular status that reflects the activity of all genes. However, such data have been used only to assess relative similarities and differences of these cells. Here we show that principal component analysis of global gene expression profiles map cells in multidimensional transcript profile space and the positions of differentiating cells progress in a stepwise manner along trajectories starting from undifferentiated embryonic stem (ES) cells located in the apex. We present three 'cell lineage trajectories', which represent the differentiation of ES cells into the first three lineages in mammalian development: primitive endoderm, trophoblast and primitive ectoderm/neural ectoderm. The positions of the cells along these trajectories seem to reflect the developmental potency of cells and can be used as a scale for the potential of cells. Indeed, we show that embryonic germ cells and induced pluripotent cells are mapped near the origin of the trajectories, whereas mouse embryo fibroblast and fibroblast cell lines are mapped near the far end of the trajectories. We suggest that this method can be used as the non-operational semi-quantitative definition of cell differentiation status and developmental potency. Furthermore, the global expression profiles of cell lineages provide a framework for the future study of in vitro and in vivo cell differentiation.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Camundongos
18.
BMC Genomics ; 9: 269, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18522731

RESUMO

BACKGROUND: Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. RESULTS: To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. CONCLUSION: We have identified the most reliable sets of direct target genes for key pluripotency genes - Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.


Assuntos
Algoritmos , Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Genoma , Proteínas HMGB/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Proteínas HMGB/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1 , Fatores de Tempo , Fatores de Transcrição/genética
19.
Reproduction ; 135(4): 439-48, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18367505

RESUMO

Cross-species comparison of gene expression is a powerful approach for discovering genes that have been conserved throughout evolution. Conserved genes are presumably very important in the mechanisms related to the unique molecular functions in oocytes. The objective of this study was to identify genes expressed in the oocyte and conserved across three diverse vertebrate species. We report the global gene expression profiles of Bos taurus and Xenopus laevis oocytes on an NIA mouse development microarray that consists of 60-mer oligonucleotide probes representing more than 20,000 mouse transcripts derived from stem cell, oocyte, and early embryo cDNA libraries. Analysis based on intensity values revealed that 9853 and 10,046 genes are expressed in bovine and Xenopus oocytes respectively. Furthermore, previously published microarray data on preimplantation development in the mouse were used for a comparative analysis of global oocyte gene expression profiles. Interestingly, a substantial proportion of the genes expressed in mouse oocytes is conserved between the three species (74%, 7275 genes). Moreover, functional annotation of these conserved oocyte-expressed genes confirmed that certain functions are conserved among the three species. RNA metabolism and cell cycle were among the over-represented Gene Ontology terms in the biological process category. Finally, a pattern-matching analysis identified 208 conserved maternally expressed genes. Results from these cross-species hybridizations allowed numerous genes expressed in oocytes and conserved between Mus musculus, B. taurus, and X. laevis to be identified. This comparative analysis of oocyte transcript profiles revealed a high degree of conservation among species.


Assuntos
Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/metabolismo , Animais , Bovinos/genética , Feminino , Biblioteca Gênica , Hibridização Genética , Camundongos/genética , Xenopus laevis/genética
20.
Stem Cells ; 26(5): 1155-65, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18323406

RESUMO

Whether SWI/SNF chromatin remodeling complexes play roles in embryonic stem (ES) cells remains unknown. Here we show that SWI/SNF complexes are present in mouse ES cells, and their composition is dynamically regulated upon induction of ES cell differentiation. For example, the SWI/SNF purified from undifferentiated ES cells contains a high level of BAF155 and a low level of BAF170 (both of which are homologs of yeast SWI3 protein), whereas that from differentiated cells contains nearly equal amounts of both. Moreover, the levels of BAF250A and BAF250B decrease during the differentiation of ES cells, whereas that of BRM increases. The altered expression of SWI/SNF components hinted that these complexes could play roles in ES cell maintenance or differentiation. We therefore generated ES cells with biallelic inactivation of BAF250B and found that these cells display a reduced proliferation rate and an abnormal cell cycle. Importantly, these cells are deficient in the self-renewal capacity of undifferentiated ES cells and exhibit certain phenotypes of differentiated cells, including reduced expression of several pluripotency-related genes and increased expression of some differentiation-related genes. These data suggest that the BAF250B-associated SWI/SNF is essential for mouse ES cells to maintain their normal proliferation and pluripotency. The work presented here underscores the importance of SWI/SNF chromatin remodeling complexes in pluripotent stem cells.


Assuntos
Diferenciação Celular , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Ciclo Celular , Proliferação de Células , Regulação para Baixo , Perfilação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...