Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(6): e0033924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38988221

RESUMO

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Assuntos
Antibacterianos , RNA Polimerases Dirigidas por DNA , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Oxacilina , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Oxacilina/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação de Sentido Incorreto , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/genética , Humanos , Mutação , Metabolômica
2.
Sci Rep ; 14(1): 16225, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003336

RESUMO

In response to the escalating global threat of antimicrobial resistance, our laboratory has established a phagemid packaging system for the generation of CRISPR-Cas13a-antimicrobial capsids targeting methicillin-resistant Staphylococcus aureus (MRSA). However, a significant challenge arose during the packaging process: the unintentional production of wild-type phages alongside the antimicrobial capsids. To address this issue, the phagemid packaging system was optimized by strategically incorporated silent mutations. This approach effectively minimized contamination risks without compromising packaging efficiency. The study identified the indispensable role of phage packaging genes, particularly terL-terS, in efficient phagemid packaging. Additionally, the elimination of homologous sequences between the phagemid and wild-type phage genome was crucial in preventing wild-type phage contamination. The optimized phagemid-LSAB(mosaic) demonstrated sequence-specific killing, efficiently eliminating MRSA strains carrying target antibiotic-resistant genes. While acknowledging the need for further exploration across bacterial species and in vivo validation, this refined phagemid packaging system offers a valuable advancement in the development of CRISPR-Cas13a-based antimicrobials, shedding light on potential solutions in the ongoing battle against bacterial infections.


Assuntos
Sistemas CRISPR-Cas , Capsídeo , Staphylococcus aureus Resistente à Meticilina , Mutação , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Capsídeo/metabolismo , Antibacterianos/farmacologia , Bacteriófagos/genética
3.
Virology ; 593: 110017, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382161

RESUMO

Bacteriophage Mu is a temperate phage known to infect various species of Enterobacteria, playing a role in bacterial mutation induction and horizontal gene transfer. The phage possesses two types of tail fibers important for host recognition, which enable it to expand its range of hosts. The alternate tail fibers are formed through the action of genes 49-50 or 52-51, allowing the Mu phage to recognize different surfaces of host cells. In a previous study, we presented the X-ray crystal structure of the C-terminal lipopolysaccharide (LPS)-binding domain of gene product (gp) 49, one of the subunits comprising the Mu tail fiber. In this study, we have determined the structure of the alternative tail fiber subunit, gp52, and compared it with other tail fibers. The results revealed that Mu phage employs different structural motifs for two individual tail fibers for recognizing different hosts.


Assuntos
Bacteriófago mu , Bacteriófagos , Bacteriófago mu/química , Bacteriófago mu/genética , Bacteriófagos/genética , Proteínas da Cauda Viral/genética
4.
Sci Rep ; 13(1): 1725, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720958

RESUMO

Flavonoids are plant-produced secondary metabolites that are found ubiquitously. We have previously reported that apigenin, a class of flavonoid, has unique antimicrobial activity against Staphylococcus aureus (S. aureus), one of the major human pathogens. Apigenin inhibited fluoroquinolone-resistant S. aureus with DNA gyrase harboring the quinolone-resistant S84L mutation but did not inhibit wild-type DNA gyrase. In this study, we describe five flavonoids, quercetin, luteolin, kaempferol, baicalein, and commercially available CID12261165, that show similar antimicrobial activity against fluoroquinolone-resistant S. aureus. Among them, CID12261165 was the most effective with MIC values of ≤ 4 mg/L against quinolone-resistant S. aureus strains. In vitro DNA cleavage and supercoiling assays demonstrated inhibitory activity of CID12261165 against mutated DNA gyrase, whereas activity against wild-type DNA gyrase was not observed. CID12261165 also inhibited quinolone-resistant Enterococci with an MIC value of 8 mg/L. While fluoroquinolone-resistant amino acid replacements can improve the fitness of bacterial cells, it is unknown why quinolone-susceptible S. aureus strains were predominant before the introduction of fluoroquinolone. The present study discusses the current discrepancies in the interpretation of antimicrobial activities of flavonoids, as well as the possible reasons for the preservation of wild-type DNA gyrase wherein the environmental flavonoids cannot be ignored.


Assuntos
Flavonoides , Fluoroquinolonas , Staphylococcus aureus , Antibacterianos/farmacologia , Apigenina , DNA Girase , Flavonoides/farmacologia , Fluoroquinolonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Farmacorresistência Bacteriana
5.
Front Microbiol ; 13: 765317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369432

RESUMO

Non-menstrual toxic shock syndrome (non-mTSS) is a life-threatening disease caused by Staphylococcus aureus strains producing superantigens, such as staphylococcal enterotoxins A, B, C, and toxic shock syndrome toxin-1 (TSST-1). However, little is known about why the TSS cases are rare, although S. aureus strains frequently carry a tst gene, which encodes TSST-1. To answer this question, the amount of TSST-1 produced by 541 clinical isolates was measured in both the presence and absence of serum supplementation to growth media. Then a set of S. aureus strains with similar genetic backgrounds isolated from patients presenting with non-mTSS and those with clinical manifestations other than non-mTSS was compared for their TSST-1 inducibility by human serum, and their whole-genome sequences were determined. Subsequently, the association of mutations identified in the tst promoter of non-mTSS strains with TSST-1 inducibility by human serum was evaluated by constructing promoter replacement mutants and green fluorescent protein (GFP) reporter recombinants. Results showed that 39 out of 541 clinical isolates (7.2%), including strains isolated from non-mTSS patients, had enhanced production of TSST-1 in the presence of serum. TSST-1 inducibility by human serum was more clearly seen in non-mTSS strains of clonal complex (CC)-5. Moreover, the whole-genome sequence analysis identified a set of sequence variations at a putative SarA-binding site of the tst promoter. This sequence variation was proven to be partially responsible for the induction of TSST-1 production by human serum. We conclude that the onset of staphylococcal toxic shock syndrome caused by TSST-1-producing CC-5 strains seem at least partially initiated by serum induction of TSST-1, which is regulated by the mutation of putative SarA-binding site at the tst promoter.

6.
Sci Rep ; 10(1): 16107, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999359

RESUMO

We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we present a follow-up study aimed to investigate genetic determinants associated with the cross-resistance. Using 12 sets of paired DAP susceptible (DAPS) and DAP non-susceptible (DAPR) MRSA isolates from 12 patients who had DAP therapy, we (i) assessed susceptibility to DAP and VCM, (ii) compared whole-genome sequences, (iii) identified mutations associated with cross-resistance to DAP and VCM, and (iv) investigated the impact of altered gene expression and metabolic pathway relevant to the cross-resistance. We found that all 12 DAPR strains exhibiting cross-resistance to DAP and VCM carried mutations in mprF, while one DAPR strain with reduced susceptibility to only DAP carried a lacF mutation. On the other hand, among the 32 vancomycin-intermediate S. aureus (VISA) strains isolated from patients treated with VCM, five out of the 18 strains showing cross-resistance to DAP and VCM carried a mprF mutation, while 14 strains resistant to only VCM had no mprF mutation. Moreover, substitution of mprF in a DAPS strain with mutated mprF resulted in cross-resistance and vice versa. The elevated lysyl-phosphatidylglycerol (L-PG) production, increased positive bacterial surface charges and activated cell wall (CW) synthetic pathways were commonly found in both clinical isolates and laboratory-developed mutants that carry mprF mutations. We conclude that mprF mutation is responsible for the cross-resistance of MRSA to DAP and VCM, and treatment with DAP is more likely to select for mprF-mediated cross-resistance than is with VCM.


Assuntos
Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Mutação/genética , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Seguimentos , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Infecções Estafilocócicas/microbiologia
7.
Sci Rep ; 10(1): 16907, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037239

RESUMO

Staphylococcus aureus strains that are susceptible to the ß-lactam antibiotic oxacillin despite carrying mecA (OS-MRSA) cause serious clinical problems globally because of their ability to easily acquire ß-lactam resistance. Understanding the genetic mechanism(s) of acquisition of the resistance is therefore crucial for infection control management. For this purpose, a whole-genome sequencing-based analysis was performed using 43 clinical OS-MRSA strains and 100 mutants with reduced susceptibility to oxacillin (MICs 1.0-256 µg/mL) generated from 26 representative OS-MRSA strains. Genome comparison between the mutants and their respective parent strains identified a total of 141 mutations in 46 genes and 8 intergenic regions. Among them, the mutations are frequently found in genes related to RNA polymerase (rpoBC), purine biosynthesis (guaA, prs, hprT), (p)ppGpp synthesis (relSau), glycolysis (pykA, fbaA, fruB), protein quality control (clpXP, ftsH), and tRNA synthase (lysS, gltX), whereas no mutations existed in mec and bla operons. Whole-genome transcriptional profile of the resistant mutants demonstrated that expression of genes associated with purine biosynthesis, protein quality control, and tRNA synthesis were significantly inhibited similar to the massive transcription downregulation seen in S. aureus during the stringent response, while the levels of mecA expression and PBP2a production were varied. We conclude that a combination effect of mecA upregulation and stringent-like response may play an important role in acquisition of ß-lactam resistance in OS-MRSA.


Assuntos
Proteínas de Bactérias/genética , Mutação/genética , Oxacilina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Filogenia , Infecções Estafilocócicas/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Nat Commun ; 11(1): 2934, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523110

RESUMO

The emergence of antimicrobial-resistant bacteria is an increasingly serious threat to global health, necessitating the development of innovative antimicrobials. Here we report the development of a series of CRISPR-Cas13a-based antibacterial nucleocapsids, termed CapsidCas13a(s), capable of sequence-specific killing of carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus by recognizing corresponding antimicrobial resistance genes. CapsidCas13a constructs are generated by packaging programmed CRISPR-Cas13a into a bacteriophage capsid to target antimicrobial resistance genes. Contrary to Cas9-based antimicrobials that lack bacterial killing capacity when the target genes are located on a plasmid, the CapsidCas13a(s) exhibit strong bacterial killing activities upon recognizing target genes regardless of their location. Moreover, we also demonstrate that the CapsidCas13a(s) can be applied to detect bacterial genes through gene-specific depletion of bacteria without employing nucleic acid manipulation and optical visualization devices. Our data underscore the potential of CapsidCas13a(s) as both therapeutic agents against antimicrobial-resistant bacteria and nonchemical agents for detection of bacterial genes.


Assuntos
Anti-Infecciosos/farmacologia , Sistemas CRISPR-Cas/genética , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
9.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499341

RESUMO

The association of Panton-Valentine leukocidin (PVL) toxin with necrotizing soft tissue infection (NSTI) caused by Staphylococcus aureus remains controversial. Here, we report the complete genome sequence of the PVL-negative S. aureus strain JMUB1273, isolated from a patient with pervasive NSTI.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30701260

RESUMO

Severe community-acquired pneumonia (CAP) caused by methicillin-resistant Staphylococcus aureus (MRSA) is relatively rare and is usually associated with rapid progression to death. Here, we report the complete genome sequence of the MRSA strain JMUB3031, which was isolated from a patient with fatal CAP.

12.
Front Microbiol ; 10: 2838, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921024

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a, previously known as CRISPR-C2c2, is the most recently identified RNA-guided RNA-targeting CRISPR-Cas system that has the unique characteristics of both targeted and collateral single-stranded RNA (ssRNA) cleavage activities. This system was first identified in Leptotrichia shahii. Here, the complete whole genome sequences of 11 Leptotrichia strains were determined and compared with 18 publicly available Leptotrichia genomes in regard to the composition, occurrence and diversity of the CRISPR-Cas13a, and other CRISPR-Cas systems. Various types of CRISPR-Cas systems were found to be unevenly distributed among the Leptotrichia genomes, including types I-B (10/29, 34.4%), II-C (1/29, 2.6%), III-A (6/29, 15.4%), III-D (6/29, 15.4%), III-like (3/29, 7.7%), and VI-A (11/29, 37.9%), while 8 strains (20.5%) had no CRISPR-Cas system at all. The Cas13a effectors were found to be highly divergent with amino acid sequence similarities ranging from 61% to 90% to that of L. shahii, but their collateral ssRNA cleavage activities leading to impediment of bacterial growth were conserved. CRISPR-Cas spacers represent a sequential achievement of former intruder encounters, and the retained spacers reflect the evolutionary phylogeny or relatedness of strains. Analysis of spacer contents and numbers among Leptotrichia species showed considerable diversity with only 4.4% of spacers (40/889) were shared by two strains. The organization and distribution of CRISPR-Cas systems (type I-VI) encoded by all registered Leptotrichia species revealed that effector or spacer sequences of the CRISPR-Cas systems were very divergent, and the prevalence of types I, III, and VI was almost equal. There was only one strain carrying type II, while none carried type IV or V. These results provide new insights into the characteristics and divergences of CRISPR-Cas systems among Leptotrichia species.

13.
J Infect Chemother ; 25(1): 1-5, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30322736

RESUMO

The objective of this study was to investigate the underlying mechanism explaining reversion of clinical DAP non-susceptible (NS) MRSA isolates to DAP-susceptible (S) by analysis of genomic and cell wall characteristics of clinical DAP-NS MRSA and DAP-S MRSA isolates as well as in vitro revertant DAP-S MRSA using whole genome sequencing (WGS) and analysis of biological properties. WGS of the 4 clinical DAP-NS MRSA revealed mprF mutations resulting in amino acid substitutions or deletion. These same amino acid substitutions and deletion were also observed in the 4 in vitro revertant DAP-S strains. While WGS identified the presence of the same mprF mutations in both the DAP-NS and in vitro DAP-S revertant strains, new mutations were also detected in other genes and intergenic regions of in vitro DAP-S revertant strains. Transmission electron microscopy to assess cell-wall (CW) thickness of 4 sets strains (pre- and post-DAP therapy isolates and in vitro DAP-S revertant) showed that 3 of the 4 isolates developed increased thickness of the CW after DAP therapy. After reversion to DAP susceptibility, CW thickness was decreased to the same level as DAP-S MRSA. Our results indicate that in vitro conversion of DAP-NS MRSA to DAP-S is independent of mprF gene mutations and may be partially explained by a change in CW thickness. However, as some strains showed no change in the CW, further studies are required to elucidate the different mechanisms of resistance to DAP, and factors for conversion of DAP-NS to DAP-S.


Assuntos
Aminoaciltransferases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Staphylococcus aureus Resistente à Meticilina/genética , Substituição de Aminoácidos/genética , Aminoaciltransferases/metabolismo , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Sequência de Bases/genética , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Daptomicina/uso terapêutico , Humanos , Meticilina/farmacologia , Meticilina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Deleção de Sequência , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Sequenciamento Completo do Genoma
14.
BMC Genomics ; 19(1): 810, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409159

RESUMO

BACKGROUND: Staphylococcus caprae is an animal-associated bacterium regarded as part of goats' microflora. Recently, S. caprae has been reported to cause human nosocomial infections such as bacteremia and bone and joint infections. However, the mechanisms responsible for the development of nosocomial infections remain largely unknown. Moreover, the complete genome sequence of S. caprae has not been determined. RESULTS: We determined the complete genome sequences of three methicillin-resistant S. caprae strains isolated from humans and compared these sequences with the genomes of S. epidermidis and S. capitis, both of which are closely related to S. caprae and are inhabitants of human skin capable of causing opportunistic infections. The genomes showed that S. caprae JMUB145, JMUB590, and JMUB898 strains contained circular chromosomes of 2,618,380, 2,629,173, and 2,598,513 bp, respectively. JMUB145 carried type V SCCmec, while JMUB590 and JMUB898 had type IVa SCCmec. A genome-wide phylogenetic SNP tree constructed using 83 complete genome sequences of 24 Staphylococcus species and 2 S. caprae draft genome sequences confirmed that S. caprae is most closely related to S. epidermidis and S. capitis. Comparative complete genome analysis of eight S. epidermidis, three S. capitis and three S. caprae strains revealed that they shared similar virulence factors represented by biofilm formation genes. These factors include wall teichoic acid synthesis genes, poly-gamma-DL-glutamic acid capsule synthesis genes, and other genes encoding nonproteinaceous adhesins. The 17 proteinases/adhesins and extracellular proteins known to be associated with biofilm formation in S. epidermidis were also conserved in these three species, and their biofilm formation could be detected in vitro. Moreover, two virulence-associated gene clusters, the type VII secretion system and capsular polysaccharide biosynthesis gene clusters, identified in S. aureus were present in S. caprae but not in S. epidermidis and S. capitis genomes. CONCLUSION: The complete genome sequences of three methicillin-resistant S. caprae isolates from humans were determined for the first time. Comparative genome analysis revealed that S. caprae is closely related to S. epidermidis and S. capitis at the species level, especially in the ability to form biofilms, which may lead to increased virulence during the development of S. caprae infections.


Assuntos
Infecções Estafilocócicas/microbiologia , Staphylococcus capitis/genética , Staphylococcus epidermidis/genética , Staphylococcus/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos , Genoma Viral , Humanos , Filogenia , Staphylococcus/classificação , Staphylococcus/isolamento & purificação , Staphylococcus capitis/isolamento & purificação , Staphylococcus epidermidis/isolamento & purificação , Virulência
15.
J Microbiol Methods ; 146: 25-32, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355575

RESUMO

Electroporation is a common technique necessary for genomic manipulation of Staphylococci. However, because this technique has too low efficiency to be applied to some Staphylococcal species and strains, especially to coagulase-negative Staphylococcus (CNS) isolates, basic researches on these clinically important Staphylococci are limited. Here we report on the optimization of electroporation parameters and conditions as well as on the generation of a universal protocol that can be efficiently applicable to both CNS and Coagulase-positive Staphylococci (CPS). This protocol could generate transformants of clinical Staphylococcus epidermidis isolate, with an efficiency of up to 1400 CFU/µg of plasmid DNA. Transformants of 12 other clinically important Staphylococcal species, including CNS and CPS, were also generated with this protocol. To our knowledge, this is the first report on successful electroporation in nine these Staphylococcal species.


Assuntos
Coagulase/análise , Eletroporação/métodos , Staphylococcus/enzimologia , Coagulase/genética , Impedância Elétrica , Genes Bacterianos , Humanos , Plasmídeos/genética , Staphylococcus/genética , Staphylococcus epidermidis , Temperatura , Fatores de Tempo , Transformação Genética/genética
16.
Genome Announc ; 4(5)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27795272

RESUMO

Acute phlegmonous gastritis is an uncommon endogenous bacterial gastritis presenting with a high mortality rate. Here, we report the complete genome sequence of an emm89 Streptococcus pyogenes strain, JMUB1235, which is the causative agent of acute phlegmonous gastritis.

17.
Antimicrob Agents Chemother ; 60(6): 3730-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067329

RESUMO

Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of strain Mu50 was achieved by sequentially introducing mutations into six genes of vancomycin-susceptible S. aureus (VSSA) strain N315ΔIP. The six mutated genes were detected in VISA strain Mu50 but not in N315ΔIP. Introduction of the mutation Ser329Leu into vraS, encoding the sensor histidine kinase of the vraSR two-component regulatory (TCR) system, and another mutation, Glu146Lys, into msrR, belonging to the LytR-CpsA-Psr (LCP) family, increased the level of vancomycin resistance to that detected in heterogeneous vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, Asn197Ser into graR of the graSR TCR system and His481Tyr into rpoB, encoding the ß subunit of RNA polymerase, converted the hVISA strain into a VISA strain with the same level of vancomycin resistance as Mu50. Surprisingly, however, the constructed quadruple mutant strain ΔIP4 did not have a thickened cell wall, a cardinal feature of the VISA phenotype. Subsequent study showed that cell wall thickening was an inducible phenotype in the mutant strain, whereas it was a constitutive one in Mu50. Finally, introduction of the Ala297Val mutation into fdh2, which encodes a putative formate dehydrogenase, or a 67-amino-acid sequence deletion into sle1 [sle1(Δ67aa)], encoding the hydrolase of N-acetylmuramyl-l-alanine amidase in the peptidoglycan, converted inducible cell wall thickening into constitutive cell wall thickening. sle1(Δ67aa) was found to cause a drastic decrease in autolysis activity. Thus, all six mutated genes required for acquisition of the VISA phenotype were directly or indirectly involved in the regulation of cell physiology. The VISA phenotype seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology.


Assuntos
Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Mutação , Staphylococcus aureus/efeitos dos fármacos , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/genética , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/ultraestrutura , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Genótipo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Fenótipo , Genética Reversa/métodos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/ultraestrutura
18.
Genome Announc ; 3(6)2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26564052

RESUMO

We report the complete genome sequence of the methicillin-sensitive Staphylococcus aureus (MSSA) strain FDA209P (ATCC 6538P and NCTC 7447).

19.
Antimicrob Agents Chemother ; 58(9): 5024-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24841271

RESUMO

Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) clinical strain Mu3 spontaneously generates VISA strains at an extremely high frequency (≥1×10(-6)). The generated VISA strains usually grow more slowly than does the parent hVISA strain, but they form colonies on vancomycin-containing agar plates before 48 h of incubation. However, we noticed a curious group of VISA strains, designated "slow VISA" (sVISA), whose colonies appear only after 72 h of incubation. They have extremely prolonged doubling times but have vancomycin MICs of 8 to ∼24 mg/liter when determined after 72 to ∼144 h of incubation. We established strain Mu3-6R-P (6R-P), which has a vancomycin MIC of 16 mg/liter (at 72 h), as a representative sVISA strain. Its cell wall was thickened and autolytic activity was decreased compared to the respective qualities of the parent hVISA strain Mu3. Whole-genome sequencing of 6R-P revealed only one mutation, encoded by rpoB (R512P), which replaced the 512th arginine of the RNA polymerase ß-subunit with proline. Its VISA phenotype was unstable, and the strain frequently reverted to hVISA with concomitant losses of pinpoint colony morphology and cell wall thickness and reduced autolytic activity. Sequencing of the rpoB genes of the phenotypic revertant strains revealed mutations affecting the 512th codon, where the proline of 6R-P was replaced with leucine, serine, or histidine. Slow VISA generated in the tissues of an infected patient serves as a temporary shelter for hVISA to survive vancomycin therapy. The sVISA strain spontaneously returns to hVISA when the threat of vancomycin is lifted. The rpoB(R512P) mutation may be regarded as a regulatory mutation that switches the reversible phenotype of sVISA on and off.


Assuntos
Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/microbiologia , RNA Polimerases Dirigidas por DNA/genética , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Fenótipo
20.
J Glob Antimicrob Resist ; 2(4): 213-224, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27873679

RESUMO

Vancomycin-intermediate Staphylococcus aureus (VISA) and its precursor hetero-VISA (hVISA) were discovered almost 20 years ago and have continued to be a stumbling block in the chemotherapy of methicillin-resistant S. aureus (MRSA). Unlike vancomycin resistance mediated by the van gene in enterococci and staphylococci, VISA is generated by accumulation of mutations. It displays diverse and intriguing genetic mechanisms underlying its resistance phenotype. Here we make a brief note on our recent understanding of the genetics of hVISA, VISA and the newly discovered phenotype 'slow VISA' (sVISA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...