Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14283, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902377

RESUMO

Electrically detected magnetic resonance (EDMR) is a promising method to readout spins in miniaturized devices utilized as quantum magnetometers. However, the sensitivity has remained challenging. In this study, we present a tandem (de-)modulation technique based on a combination of magnetic field and radio frequency modulation. By enabling higher demodulation frequencies to avoid 1/f-noise, enhancing self-calibration capabilities, and eliminating background signals by 3 orders of magnitude, this technique represents a significant advancement in the field of EDMR-based sensors. This novel approach paves the way for EDMR being the ideal candidate for ultra-sensitive magnetometry at ambient conditions without any optical components, which brings it one step closer to a chip-based quantum sensor for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...