Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 90(8): 1606-1612, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297101

RESUMO

Intrinsically disordered protein (IDP) plays an important role in liquid-liquid phase separation (LLPS). RNA-binding protein fused in sarcoma (FUS) is a well-studied IDP that induces LLPS since its low-complexity core region (FUS-LC-core) is essential for droplet formation through contacts between FUS-LC-cores. Several experimental studies have reported that adenosine triphosphate (ATP) concentrations modulate LLPS-driven droplet formation through the dissolution of FUS. To elucidate the role of ATP in this dissolution, microsecond-order all-atom molecular dynamics (MD) simulations were performed for a crowded system of FUS-LC-cores in the presence of multiple ATP molecules. Our analysis revealed that the adenine group of ATP frequently contacted the FUS-LC-core, and the phosphoric acid group of ATP was exposed to the external solvent, which promoted both hydration and solubilization of FUS.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sarcoma , Humanos , Trifosfato de Adenosina , Proteínas Intrinsicamente Desordenadas/química , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA
2.
Materials (Basel) ; 15(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208030

RESUMO

Parallel cascade selection molecular dynamics (PaCS-MD) is a rare-event sampling method that generates transition pathways between a reactant and product. To sample the transition pathways, PaCS-MD repeats short-time MD simulations from important configurations as conformational resampling cycles. In this study, PaCS-MD was extended to sample ligand binding pathways toward a target protein, which is referred to as LB-PaCS-MD. In a ligand-concentrated environment, where multiple ligand copies are randomly arranged around the target protein, LB-PaCS-MD allows for the frequent sampling of ligand binding pathways. To select the important configurations, we specified the center of mass (COM) distance between each ligand and the relevant binding site of the target protein, where snapshots generated by the short-time MD simulations were ranked by their COM distance values. From each cycle, snapshots with smaller COM distance values were selected as the important configurations to be resampled using the short-time MD simulations. By repeating conformational resampling cycles, the COM distance values gradually decreased and converged to constants, meaning that a set of ligand binding pathways toward the target protein was sampled by LB-PaCS-MD. To demonstrate relative efficiency, LB-PaCS-MD was applied to several proteins, and their ligand binding pathways were sampled more frequently than conventional MD simulations.

3.
Phys Chem Chem Phys ; 23(36): 20398-20405, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494045

RESUMO

Taste receptors are important sensors for the detection of nutrient concentrations in animals. Tastes are recognized by interactions between chemical substances and taste receptors. Recently, the high-resolution X-ray crystal structure of the extracellular ligand-binding domains (LBDs) of medaka fish (Oryzias latipes) taste receptor type 1 (T1r) complexed with ligands (amino acids) was determined. Medaka fish T1r is a heterodimer composed of two different LBDs, T1r2aLBD and T1r3LBD. In this study, we performed all-atom molecular dynamics (MD) simulations on this heterodimer (T1r2aLBD-T1r3LBD) to address mutational effects on key residues near each ligand-binding pocket in recognizing one of the ligands (L-Gln). For T1r2aLBD, Ser165 is important in ligand recognition due to its direct hydrogen bonding with the ligand. After mutating Ser165 to Ile or Ala, the direct hydrogen bonds between the ligand and the binding pocket were weakened, which destabilized the ligand-binding form of T1r2aLBD. For T1r3LBD, Ser300 is important in ligand recognition. The water-mediated hydrogen bond with the side-chain hydroxyl group of Ser300 is a single interaction that maintains the ligand-binding form of T1r3LBD. After mutating Ser300 to Glu or Ala, both mutant systems almost maintained their ligand-binding form. As a mechanism for maintaining the binding form of T1r3LBD, alternative hydrogen bonds were formed as direct interactions instead of the indirect water-mediated interactions found in the wild-type system, which stabilized the binding form of T1r3LBD. Judging from our in silico mutational analyses, T1r2aLBD was structurally destabilized by the amino acid mutations. Therefore, it might be required that the ligand-binding pocket of T1r2aLBD is composed of a set of specific residues to maintain its ligand-binding form. On the contrary, T1r3LBD was robust enough to withstand the amino acid mutations. These different ligand-binding abilities of both LBDs provide multiple binding modes, which might be helpful for discriminating various taste substances or detecting concentrations of nutrients efficiently.


Assuntos
Aminoácidos/química , Receptores Acoplados a Proteínas G/química , Paladar , Animais , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Simulação de Dinâmica Molecular , Mutação , Oryzias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...